Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044743480> ?p ?o ?g. }
- W3044743480 endingPage "308" @default.
- W3044743480 startingPage "308" @default.
- W3044743480 abstract "The availability of molecular markers has revolutionized conventional ways to improve genotypes in plant and animal breeding through genome-based predictions. Several models and methods have been developed to leverage the genomic information in the prediction context to allow more efficient ways to screen and select superior genotypes. In plant breeding, usually, grain yield (yield) is the main trait to drive the selection of superior genotypes; however, in many cases, the information of associated traits is also routinely collected and it can potentially be used to enhance the selection. In this research, we considered different prediction strategies to leverage the information of the associated traits ([AT]; full: all traits observed for the same genotype; and partial: some traits observed for the same genotype) under an alternative single-trait model and the multi-trait approach. The alternative single-trait model included the information of the AT for yield prediction via the phenotypic covariances while the multi-trait model jointly analyzed all the traits. The performance of these strategies was assessed using the marker and phenotypic information from the Soybean Nested Association Mapping (SoyNAM) project observed in Nebraska in 2012. The results showed that the alternative single-trait strategy, which combines the marker and the information of the AT, outperforms the multi-trait model by around 12% and the conventional single-trait strategy (baseline) by 25%. When no information on the AT was available for those genotypes in the testing sets, the multi-trait model reduced the baseline results by around 6%. For the cases where genotypes were partially observed (i.e., some traits observed but not others for the same genotype), the multi-trait strategy showed improvements of around 6% for yield and between 2% to 9% for the other traits. Hence, when yield drives the selection of superior genotypes, the single-trait and multi-trait genomic prediction will achieve significant improvements when some genotypes have been fully or partially tested, with the alternative single-trait model delivering the best results. These results provide empirical evidence of the usefulness of the AT for improving the predictive ability of prediction models for breeding applications." @default.
- W3044743480 created "2020-07-29" @default.
- W3044743480 creator A5012541167 @default.
- W3044743480 creator A5058742570 @default.
- W3044743480 creator A5078861728 @default.
- W3044743480 date "2020-07-22" @default.
- W3044743480 modified "2023-10-14" @default.
- W3044743480 title "Prediction Strategies for Leveraging Information of Associated Traits under Single- and Multi-Trait Approaches in Soybeans" @default.
- W3044743480 cites W1928998639 @default.
- W3044743480 cites W1947954067 @default.
- W3044743480 cites W1970149620 @default.
- W3044743480 cites W1979841890 @default.
- W3044743480 cites W1982965260 @default.
- W3044743480 cites W2005393148 @default.
- W3044743480 cites W2064013109 @default.
- W3044743480 cites W2067715889 @default.
- W3044743480 cites W2075425860 @default.
- W3044743480 cites W2095335319 @default.
- W3044743480 cites W2095808133 @default.
- W3044743480 cites W2128343509 @default.
- W3044743480 cites W2130060388 @default.
- W3044743480 cites W2148306906 @default.
- W3044743480 cites W2153707555 @default.
- W3044743480 cites W2157313957 @default.
- W3044743480 cites W2163468216 @default.
- W3044743480 cites W2241764905 @default.
- W3044743480 cites W2495369798 @default.
- W3044743480 cites W2562063914 @default.
- W3044743480 cites W2600596512 @default.
- W3044743480 cites W2611362921 @default.
- W3044743480 cites W2613078054 @default.
- W3044743480 cites W2615032961 @default.
- W3044743480 cites W2735798264 @default.
- W3044743480 cites W2742340557 @default.
- W3044743480 cites W2760544538 @default.
- W3044743480 cites W2800095008 @default.
- W3044743480 cites W2892244280 @default.
- W3044743480 cites W2922406356 @default.
- W3044743480 cites W2934374731 @default.
- W3044743480 cites W2961752004 @default.
- W3044743480 cites W2966030652 @default.
- W3044743480 cites W2990490566 @default.
- W3044743480 cites W3001644812 @default.
- W3044743480 cites W3011100961 @default.
- W3044743480 doi "https://doi.org/10.3390/agriculture10080308" @default.
- W3044743480 hasPublicationYear "2020" @default.
- W3044743480 type Work @default.
- W3044743480 sameAs 3044743480 @default.
- W3044743480 citedByCount "4" @default.
- W3044743480 countsByYear W30447434802021 @default.
- W3044743480 countsByYear W30447434802022 @default.
- W3044743480 countsByYear W30447434802023 @default.
- W3044743480 crossrefType "journal-article" @default.
- W3044743480 hasAuthorship W3044743480A5012541167 @default.
- W3044743480 hasAuthorship W3044743480A5058742570 @default.
- W3044743480 hasAuthorship W3044743480A5078861728 @default.
- W3044743480 hasBestOaLocation W30447434801 @default.
- W3044743480 hasConcept C104317684 @default.
- W3044743480 hasConcept C104959735 @default.
- W3044743480 hasConcept C105795698 @default.
- W3044743480 hasConcept C106934330 @default.
- W3044743480 hasConcept C119857082 @default.
- W3044743480 hasConcept C127716648 @default.
- W3044743480 hasConcept C130073038 @default.
- W3044743480 hasConcept C135763542 @default.
- W3044743480 hasConcept C150903083 @default.
- W3044743480 hasConcept C151730666 @default.
- W3044743480 hasConcept C153083717 @default.
- W3044743480 hasConcept C153209595 @default.
- W3044743480 hasConcept C197321923 @default.
- W3044743480 hasConcept C199360897 @default.
- W3044743480 hasConcept C2779343474 @default.
- W3044743480 hasConcept C2992444039 @default.
- W3044743480 hasConcept C33923547 @default.
- W3044743480 hasConcept C41008148 @default.
- W3044743480 hasConcept C54355233 @default.
- W3044743480 hasConcept C6557445 @default.
- W3044743480 hasConcept C70721500 @default.
- W3044743480 hasConcept C81917197 @default.
- W3044743480 hasConcept C81941488 @default.
- W3044743480 hasConcept C86803240 @default.
- W3044743480 hasConcept C9287583 @default.
- W3044743480 hasConceptScore W3044743480C104317684 @default.
- W3044743480 hasConceptScore W3044743480C104959735 @default.
- W3044743480 hasConceptScore W3044743480C105795698 @default.
- W3044743480 hasConceptScore W3044743480C106934330 @default.
- W3044743480 hasConceptScore W3044743480C119857082 @default.
- W3044743480 hasConceptScore W3044743480C127716648 @default.
- W3044743480 hasConceptScore W3044743480C130073038 @default.
- W3044743480 hasConceptScore W3044743480C135763542 @default.
- W3044743480 hasConceptScore W3044743480C150903083 @default.
- W3044743480 hasConceptScore W3044743480C151730666 @default.
- W3044743480 hasConceptScore W3044743480C153083717 @default.
- W3044743480 hasConceptScore W3044743480C153209595 @default.
- W3044743480 hasConceptScore W3044743480C197321923 @default.
- W3044743480 hasConceptScore W3044743480C199360897 @default.
- W3044743480 hasConceptScore W3044743480C2779343474 @default.
- W3044743480 hasConceptScore W3044743480C2992444039 @default.