Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044786157> ?p ?o ?g. }
- W3044786157 endingPage "59" @default.
- W3044786157 startingPage "43" @default.
- W3044786157 abstract "Internet of things (IoT), Big Data, and artificial intelligence (AI) are related research fields that have a relevant impact factor on the design and development of enhanced personalized healthcare systems. This paper discussed the review of AI for IoT and medical systems, which include the usage and practice of AI methodology in different fields of healthcare. The literature review shows that four main areas use AI methodology in medicine, such as heart disease diagnosis, predictive methods, robotic surgery, and personalized treatment. The results confirm that k-nearest neighbors, support vector machine, support vector regression, Naive Bayes, linear regression, regression tree, classification tree, and random forest are the leading AI methods. These methods are mainly used for patient’s data analysis to improve health conditions. Robotic surgery systems such as Transoral Robotic Surgery and Automated Endoscopic System for Optimal Positioning lead to several advantages as these methods provide less aggressive treatments and provide better results in terms of blood loss and faster recovery. Furthermore, Internet of medical things addresses numerous health conditions such a vital biophysical parameters supervision, diabetes, and medical decision-making support methods." @default.
- W3044786157 created "2020-07-29" @default.
- W3044786157 creator A5016698481 @default.
- W3044786157 creator A5046397615 @default.
- W3044786157 creator A5053106863 @default.
- W3044786157 creator A5070439928 @default.
- W3044786157 creator A5089150913 @default.
- W3044786157 date "2020-07-22" @default.
- W3044786157 modified "2023-09-26" @default.
- W3044786157 title "Artificial Intelligence for Internet of Things and Enhanced Medical Systems" @default.
- W3044786157 cites W2075258508 @default.
- W3044786157 cites W2077544344 @default.
- W3044786157 cites W2083016933 @default.
- W3044786157 cites W2099214283 @default.
- W3044786157 cites W2247103793 @default.
- W3044786157 cites W2294550432 @default.
- W3044786157 cites W2324153478 @default.
- W3044786157 cites W2512300049 @default.
- W3044786157 cites W2512827249 @default.
- W3044786157 cites W2537381390 @default.
- W3044786157 cites W2552462220 @default.
- W3044786157 cites W2552889787 @default.
- W3044786157 cites W2556587699 @default.
- W3044786157 cites W2566291880 @default.
- W3044786157 cites W2617110182 @default.
- W3044786157 cites W2624495028 @default.
- W3044786157 cites W2736139843 @default.
- W3044786157 cites W2752051970 @default.
- W3044786157 cites W2753919178 @default.
- W3044786157 cites W2760784103 @default.
- W3044786157 cites W2768229290 @default.
- W3044786157 cites W2776897388 @default.
- W3044786157 cites W2781661799 @default.
- W3044786157 cites W2790030916 @default.
- W3044786157 cites W2790246571 @default.
- W3044786157 cites W2795035716 @default.
- W3044786157 cites W2796802878 @default.
- W3044786157 cites W2800094831 @default.
- W3044786157 cites W2802341089 @default.
- W3044786157 cites W2810289402 @default.
- W3044786157 cites W2820158891 @default.
- W3044786157 cites W2885191712 @default.
- W3044786157 cites W2888118982 @default.
- W3044786157 cites W2888679364 @default.
- W3044786157 cites W2893225688 @default.
- W3044786157 cites W2893457521 @default.
- W3044786157 cites W2897071747 @default.
- W3044786157 cites W2897964703 @default.
- W3044786157 cites W2898670678 @default.
- W3044786157 cites W2898760061 @default.
- W3044786157 cites W2900296911 @default.
- W3044786157 cites W2900845395 @default.
- W3044786157 cites W2901226889 @default.
- W3044786157 cites W2902482006 @default.
- W3044786157 cites W2908736795 @default.
- W3044786157 cites W2910886044 @default.
- W3044786157 cites W2911966779 @default.
- W3044786157 cites W2912275277 @default.
- W3044786157 cites W2913077642 @default.
- W3044786157 cites W2913555801 @default.
- W3044786157 cites W2914394249 @default.
- W3044786157 cites W2915213244 @default.
- W3044786157 cites W2924742436 @default.
- W3044786157 cites W2927712622 @default.
- W3044786157 cites W2929026486 @default.
- W3044786157 cites W2930780453 @default.
- W3044786157 cites W2933263560 @default.
- W3044786157 cites W2934144495 @default.
- W3044786157 cites W2947875959 @default.
- W3044786157 cites W2948798395 @default.
- W3044786157 cites W2949358505 @default.
- W3044786157 cites W2955419213 @default.
- W3044786157 cites W2955925394 @default.
- W3044786157 cites W2957321587 @default.
- W3044786157 cites W2967009742 @default.
- W3044786157 cites W2969073819 @default.
- W3044786157 cites W2975344589 @default.
- W3044786157 cites W2976324988 @default.
- W3044786157 cites W2981442542 @default.
- W3044786157 cites W2981670994 @default.
- W3044786157 cites W2981853720 @default.
- W3044786157 cites W2988629571 @default.
- W3044786157 cites W2989909930 @default.
- W3044786157 cites W4238224777 @default.
- W3044786157 cites W4292548574 @default.
- W3044786157 doi "https://doi.org/10.1007/978-981-15-5495-7_3" @default.
- W3044786157 hasPublicationYear "2020" @default.
- W3044786157 type Work @default.
- W3044786157 sameAs 3044786157 @default.
- W3044786157 citedByCount "18" @default.
- W3044786157 countsByYear W30447861572021 @default.
- W3044786157 countsByYear W30447861572022 @default.
- W3044786157 countsByYear W30447861572023 @default.
- W3044786157 crossrefType "book-chapter" @default.
- W3044786157 hasAuthorship W3044786157A5016698481 @default.
- W3044786157 hasAuthorship W3044786157A5046397615 @default.
- W3044786157 hasAuthorship W3044786157A5053106863 @default.
- W3044786157 hasAuthorship W3044786157A5070439928 @default.