Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044807731> ?p ?o ?g. }
- W3044807731 endingPage "2395" @default.
- W3044807731 startingPage "2380" @default.
- W3044807731 abstract "Cyber foraging has been shown to be especially effective for augmenting low-power Internet-of-Thing (IoT) devices by offloading video processing tasks to nearby edge/cloud computing servers. Factors such as dynamic network conditions, concurrent user access, and limited resource availability, cause offloading decisions that negatively impact overall processing throughput and end-user delays. Moreover, edge/cloud platforms currently offer both Virtual Machine (VM) and serverless computing pricing models, but many existing edge offloading approaches only investigate single VM-based offloading performance. In this paper, we propose a predictive (NP-complete) scheduling-based offloading framework and a heuristic-based counterpart that use machine learning to dynamically decide what combinations of functions or single VM needs to be deployed so that tasks can be efficiently scheduled. We collected over 10,000 network and device traces in a series of realistic experiments relating to a protest crowds incident management application. We then evaluated the practicality of our predictive cyber foraging approach using trace-driven simulations for up to 1000 devices. Our results indicate that predicting single VM offloading costs: (a) leads to near-optimal scheduling in 70% of the cases for service function chaining, and (b) offers a 40% gain in performance over traditional baseline estimation techniques that rely on simple statistics for estimations in the case of single VM-offloading. Considering a series of visual computing offloading scenarios, we also validate our approach benefits of using online versus offline machine learning models for predicting offloading delays." @default.
- W3044807731 created "2020-07-29" @default.
- W3044807731 creator A5017113005 @default.
- W3044807731 creator A5022694629 @default.
- W3044807731 creator A5025286899 @default.
- W3044807731 creator A5065947087 @default.
- W3044807731 creator A5069880315 @default.
- W3044807731 creator A5072008189 @default.
- W3044807731 date "2020-12-01" @default.
- W3044807731 modified "2023-10-13" @default.
- W3044807731 title "Predictive Cyber Foraging for Visual Cloud Computing in Large-Scale IoT Systems" @default.
- W3044807731 cites W1497586388 @default.
- W3044807731 cites W1972041827 @default.
- W3044807731 cites W1973512058 @default.
- W3044807731 cites W2016023958 @default.
- W3044807731 cites W2021663962 @default.
- W3044807731 cites W2023380813 @default.
- W3044807731 cites W2025529395 @default.
- W3044807731 cites W2071306171 @default.
- W3044807731 cites W2084224084 @default.
- W3044807731 cites W2088692353 @default.
- W3044807731 cites W2121990650 @default.
- W3044807731 cites W2135099885 @default.
- W3044807731 cites W2150298366 @default.
- W3044807731 cites W2195423816 @default.
- W3044807731 cites W2290644498 @default.
- W3044807731 cites W2346198910 @default.
- W3044807731 cites W2400861403 @default.
- W3044807731 cites W2473397863 @default.
- W3044807731 cites W2529351870 @default.
- W3044807731 cites W2546457897 @default.
- W3044807731 cites W2586430547 @default.
- W3044807731 cites W2737663594 @default.
- W3044807731 cites W2740186459 @default.
- W3044807731 cites W2752709647 @default.
- W3044807731 cites W2754987233 @default.
- W3044807731 cites W2770702552 @default.
- W3044807731 cites W2771152181 @default.
- W3044807731 cites W2786070938 @default.
- W3044807731 cites W2789973752 @default.
- W3044807731 cites W2791432311 @default.
- W3044807731 cites W2797431058 @default.
- W3044807731 cites W2806446964 @default.
- W3044807731 cites W2844394752 @default.
- W3044807731 cites W2887817292 @default.
- W3044807731 cites W2902172837 @default.
- W3044807731 cites W2911916515 @default.
- W3044807731 cites W2960791616 @default.
- W3044807731 cites W2963283923 @default.
- W3044807731 cites W2964326881 @default.
- W3044807731 cites W2975591621 @default.
- W3044807731 cites W2979596121 @default.
- W3044807731 cites W3013638639 @default.
- W3044807731 cites W3100857292 @default.
- W3044807731 cites W3106445841 @default.
- W3044807731 doi "https://doi.org/10.1109/tnsm.2020.3010497" @default.
- W3044807731 hasPublicationYear "2020" @default.
- W3044807731 type Work @default.
- W3044807731 sameAs 3044807731 @default.
- W3044807731 citedByCount "6" @default.
- W3044807731 countsByYear W30448077312021 @default.
- W3044807731 countsByYear W30448077312022 @default.
- W3044807731 countsByYear W30448077312023 @default.
- W3044807731 crossrefType "journal-article" @default.
- W3044807731 hasAuthorship W3044807731A5017113005 @default.
- W3044807731 hasAuthorship W3044807731A5022694629 @default.
- W3044807731 hasAuthorship W3044807731A5025286899 @default.
- W3044807731 hasAuthorship W3044807731A5065947087 @default.
- W3044807731 hasAuthorship W3044807731A5069880315 @default.
- W3044807731 hasAuthorship W3044807731A5072008189 @default.
- W3044807731 hasBestOaLocation W30448077311 @default.
- W3044807731 hasConcept C111919701 @default.
- W3044807731 hasConcept C120314980 @default.
- W3044807731 hasConcept C121332964 @default.
- W3044807731 hasConcept C149635348 @default.
- W3044807731 hasConcept C2778755073 @default.
- W3044807731 hasConcept C41008148 @default.
- W3044807731 hasConcept C62520636 @default.
- W3044807731 hasConcept C79974875 @default.
- W3044807731 hasConcept C81860439 @default.
- W3044807731 hasConceptScore W3044807731C111919701 @default.
- W3044807731 hasConceptScore W3044807731C120314980 @default.
- W3044807731 hasConceptScore W3044807731C121332964 @default.
- W3044807731 hasConceptScore W3044807731C149635348 @default.
- W3044807731 hasConceptScore W3044807731C2778755073 @default.
- W3044807731 hasConceptScore W3044807731C41008148 @default.
- W3044807731 hasConceptScore W3044807731C62520636 @default.
- W3044807731 hasConceptScore W3044807731C79974875 @default.
- W3044807731 hasConceptScore W3044807731C81860439 @default.
- W3044807731 hasFunder F4320306076 @default.
- W3044807731 hasIssue "4" @default.
- W3044807731 hasLocation W30448077311 @default.
- W3044807731 hasOpenAccess W3044807731 @default.
- W3044807731 hasPrimaryLocation W30448077311 @default.
- W3044807731 hasRelatedWork W2048509577 @default.
- W3044807731 hasRelatedWork W2383532021 @default.
- W3044807731 hasRelatedWork W2586486898 @default.
- W3044807731 hasRelatedWork W275032887 @default.