Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044892747> ?p ?o ?g. }
- W3044892747 endingPage "135512" @default.
- W3044892747 startingPage "135499" @default.
- W3044892747 abstract "Sentiment analysis is a computational analysis of unstructured textual data, used to assess the person's attitude from a piece of text. Aspect-based sentimental analysis defines the relationship among opinion targets of a document and the polarity values corresponding to them. Since aspects are often implicit, it is an extremely challenging task to spot them and calculate their respective polarity. In recent years, several methods, strategies and improvements have been suggested to address these problems at various levels, including corpus or lexicon-based approaches, term frequency and reverse document frequency approaches. These strategies are quite effective when aspects are correlated with predefined groups and may struggle when low-frequency aspects are involved. In terms of accuracy, heuristic approaches are stronger than frequency and lexicon based approaches, however, they consume time due to different combinations of features. This article presents an effective method to analyze the sentiments by integrating three operations: (a) Mining semantic features (b) Transformation of extracted corpus using Word2vec (c) Implementation of CNN for the mining of opinion. The hyperparameters of CNN are tuned with Genetic Algorithm (GA). Experimental results revealed that the proposed technique gave better results than the state-of-the-art techniques with 95.5% accuracy rate, 94.3% precision rate, 91.1% recall and 96.0% f-measure rate." @default.
- W3044892747 created "2020-07-29" @default.
- W3044892747 creator A5000750713 @default.
- W3044892747 creator A5062921553 @default.
- W3044892747 creator A5072197049 @default.
- W3044892747 date "2020-01-01" @default.
- W3044892747 modified "2023-10-02" @default.
- W3044892747 title "Aspect-Based Sentiment Analysis Using a Hybridized Approach Based on CNN and GA" @default.
- W3044892747 cites W1501931667 @default.
- W3044892747 cites W1832693441 @default.
- W3044892747 cites W1944128481 @default.
- W3044892747 cites W1956800861 @default.
- W3044892747 cites W1979432867 @default.
- W3044892747 cites W1986187360 @default.
- W3044892747 cites W2005624335 @default.
- W3044892747 cites W2020060453 @default.
- W3044892747 cites W2069539533 @default.
- W3044892747 cites W2094921363 @default.
- W3044892747 cites W2197429038 @default.
- W3044892747 cites W2215041843 @default.
- W3044892747 cites W2215376118 @default.
- W3044892747 cites W2290844432 @default.
- W3044892747 cites W2334381934 @default.
- W3044892747 cites W2479668135 @default.
- W3044892747 cites W2511995329 @default.
- W3044892747 cites W2513534526 @default.
- W3044892747 cites W2590061102 @default.
- W3044892747 cites W2598013184 @default.
- W3044892747 cites W2613255073 @default.
- W3044892747 cites W2618843390 @default.
- W3044892747 cites W2749564305 @default.
- W3044892747 cites W2786411768 @default.
- W3044892747 cites W2801716390 @default.
- W3044892747 cites W2803609466 @default.
- W3044892747 cites W2885559102 @default.
- W3044892747 cites W2887856105 @default.
- W3044892747 cites W2892137778 @default.
- W3044892747 cites W2900946789 @default.
- W3044892747 cites W2901737885 @default.
- W3044892747 cites W2901922204 @default.
- W3044892747 cites W2912717331 @default.
- W3044892747 cites W2912723748 @default.
- W3044892747 cites W2921446579 @default.
- W3044892747 cites W2921600946 @default.
- W3044892747 cites W2923528470 @default.
- W3044892747 cites W2953771450 @default.
- W3044892747 cites W2954352781 @default.
- W3044892747 cites W4251883517 @default.
- W3044892747 doi "https://doi.org/10.1109/access.2020.3011802" @default.
- W3044892747 hasPublicationYear "2020" @default.
- W3044892747 type Work @default.
- W3044892747 sameAs 3044892747 @default.
- W3044892747 citedByCount "32" @default.
- W3044892747 countsByYear W30448927472020 @default.
- W3044892747 countsByYear W30448927472021 @default.
- W3044892747 countsByYear W30448927472022 @default.
- W3044892747 countsByYear W30448927472023 @default.
- W3044892747 crossrefType "journal-article" @default.
- W3044892747 hasAuthorship W3044892747A5000750713 @default.
- W3044892747 hasAuthorship W3044892747A5062921553 @default.
- W3044892747 hasAuthorship W3044892747A5072197049 @default.
- W3044892747 hasBestOaLocation W30448927471 @default.
- W3044892747 hasConcept C119857082 @default.
- W3044892747 hasConcept C124101348 @default.
- W3044892747 hasConcept C1491633281 @default.
- W3044892747 hasConcept C153180895 @default.
- W3044892747 hasConcept C154945302 @default.
- W3044892747 hasConcept C173801870 @default.
- W3044892747 hasConcept C204321447 @default.
- W3044892747 hasConcept C2776461190 @default.
- W3044892747 hasConcept C2777361361 @default.
- W3044892747 hasConcept C2778121359 @default.
- W3044892747 hasConcept C2987098735 @default.
- W3044892747 hasConcept C41008148 @default.
- W3044892747 hasConcept C41608201 @default.
- W3044892747 hasConcept C54355233 @default.
- W3044892747 hasConcept C66402592 @default.
- W3044892747 hasConcept C8642999 @default.
- W3044892747 hasConcept C86803240 @default.
- W3044892747 hasConceptScore W3044892747C119857082 @default.
- W3044892747 hasConceptScore W3044892747C124101348 @default.
- W3044892747 hasConceptScore W3044892747C1491633281 @default.
- W3044892747 hasConceptScore W3044892747C153180895 @default.
- W3044892747 hasConceptScore W3044892747C154945302 @default.
- W3044892747 hasConceptScore W3044892747C173801870 @default.
- W3044892747 hasConceptScore W3044892747C204321447 @default.
- W3044892747 hasConceptScore W3044892747C2776461190 @default.
- W3044892747 hasConceptScore W3044892747C2777361361 @default.
- W3044892747 hasConceptScore W3044892747C2778121359 @default.
- W3044892747 hasConceptScore W3044892747C2987098735 @default.
- W3044892747 hasConceptScore W3044892747C41008148 @default.
- W3044892747 hasConceptScore W3044892747C41608201 @default.
- W3044892747 hasConceptScore W3044892747C54355233 @default.
- W3044892747 hasConceptScore W3044892747C66402592 @default.
- W3044892747 hasConceptScore W3044892747C8642999 @default.
- W3044892747 hasConceptScore W3044892747C86803240 @default.
- W3044892747 hasLocation W30448927471 @default.
- W3044892747 hasLocation W30448927472 @default.