Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044893488> ?p ?o ?g. }
- W3044893488 endingPage "2001842" @default.
- W3044893488 startingPage "2001842" @default.
- W3044893488 abstract "Neural networks based on memristive devices have achieved great progress recently. However, memristive synapses with nonlinearity and asymmetry seriously limit the classification accuracy. Moreover, insufficient number of training samples in many cases also have negative effect on the classification accuracy of neural networks due to overfitting. In this work, dropout neuronal units are developed based on stochastic volatile memristive devices of Ag/Ta2O5:Ag/Pt. The memristive neural network using the dropout neuronal units effectively solves the problem of overfitting and mitigates the negative effects of the nonideality of memristive synapses, eventually achieves a classification accuracy comparable to the theoretical limit. The stochastic and volatile switching performances of the Ag/Ta2O5:Ag/Pt device are attributed to the stochastical rupture of the Ag filament under high electrical stress in the Ta2O5 layer, according to the TEM observation and the kinetic Monte Carlo simulation." @default.
- W3044893488 created "2020-07-29" @default.
- W3044893488 creator A5009706869 @default.
- W3044893488 creator A5030058072 @default.
- W3044893488 creator A5035892256 @default.
- W3044893488 creator A5048383501 @default.
- W3044893488 creator A5056053058 @default.
- W3044893488 creator A5067434249 @default.
- W3044893488 creator A5091398293 @default.
- W3044893488 date "2020-07-26" @default.
- W3044893488 modified "2023-10-14" @default.
- W3044893488 title "Implementation of Dropout Neuronal Units Based on Stochastic Memristive Devices in Neural Networks with High Classification Accuracy" @default.
- W3044893488 cites W1875784636 @default.
- W3044893488 cites W1885652216 @default.
- W3044893488 cites W1974302794 @default.
- W3044893488 cites W1975647260 @default.
- W3044893488 cites W2011674861 @default.
- W3044893488 cites W2048500784 @default.
- W3044893488 cites W2067467929 @default.
- W3044893488 cites W2090205455 @default.
- W3044893488 cites W2102805256 @default.
- W3044893488 cites W2121908414 @default.
- W3044893488 cites W2129610161 @default.
- W3044893488 cites W2213612645 @default.
- W3044893488 cites W2293601591 @default.
- W3044893488 cites W2389556795 @default.
- W3044893488 cites W2462963692 @default.
- W3044893488 cites W2468323742 @default.
- W3044893488 cites W2520567250 @default.
- W3044893488 cites W2525649597 @default.
- W3044893488 cites W2526646482 @default.
- W3044893488 cites W2536340683 @default.
- W3044893488 cites W2582645878 @default.
- W3044893488 cites W2587589606 @default.
- W3044893488 cites W2591029953 @default.
- W3044893488 cites W2609852068 @default.
- W3044893488 cites W2613205562 @default.
- W3044893488 cites W2743455512 @default.
- W3044893488 cites W2762731122 @default.
- W3044893488 cites W2771420577 @default.
- W3044893488 cites W2782791387 @default.
- W3044893488 cites W2792208628 @default.
- W3044893488 cites W2804840361 @default.
- W3044893488 cites W2807750997 @default.
- W3044893488 cites W2883311408 @default.
- W3044893488 cites W2891749881 @default.
- W3044893488 cites W2898956209 @default.
- W3044893488 cites W2901050347 @default.
- W3044893488 cites W2903590539 @default.
- W3044893488 cites W2922168646 @default.
- W3044893488 cites W2960778947 @default.
- W3044893488 cites W2968826214 @default.
- W3044893488 cites W2995291979 @default.
- W3044893488 cites W3003821665 @default.
- W3044893488 cites W3103963684 @default.
- W3044893488 cites W3104697398 @default.
- W3044893488 cites W3104804488 @default.
- W3044893488 cites W4254436426 @default.
- W3044893488 doi "https://doi.org/10.1002/advs.202001842" @default.
- W3044893488 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7509653" @default.
- W3044893488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32999852" @default.
- W3044893488 hasPublicationYear "2020" @default.
- W3044893488 type Work @default.
- W3044893488 sameAs 3044893488 @default.
- W3044893488 citedByCount "22" @default.
- W3044893488 countsByYear W30448934882020 @default.
- W3044893488 countsByYear W30448934882021 @default.
- W3044893488 countsByYear W30448934882022 @default.
- W3044893488 countsByYear W30448934882023 @default.
- W3044893488 crossrefType "journal-article" @default.
- W3044893488 hasAuthorship W3044893488A5009706869 @default.
- W3044893488 hasAuthorship W3044893488A5030058072 @default.
- W3044893488 hasAuthorship W3044893488A5035892256 @default.
- W3044893488 hasAuthorship W3044893488A5048383501 @default.
- W3044893488 hasAuthorship W3044893488A5056053058 @default.
- W3044893488 hasAuthorship W3044893488A5067434249 @default.
- W3044893488 hasAuthorship W3044893488A5091398293 @default.
- W3044893488 hasBestOaLocation W30448934881 @default.
- W3044893488 hasConcept C119857082 @default.
- W3044893488 hasConcept C121332964 @default.
- W3044893488 hasConcept C134306372 @default.
- W3044893488 hasConcept C151201525 @default.
- W3044893488 hasConcept C154945302 @default.
- W3044893488 hasConcept C158622935 @default.
- W3044893488 hasConcept C192562407 @default.
- W3044893488 hasConcept C22019652 @default.
- W3044893488 hasConcept C2776145597 @default.
- W3044893488 hasConcept C33923547 @default.
- W3044893488 hasConcept C41008148 @default.
- W3044893488 hasConcept C50644808 @default.
- W3044893488 hasConcept C62520636 @default.
- W3044893488 hasConceptScore W3044893488C119857082 @default.
- W3044893488 hasConceptScore W3044893488C121332964 @default.
- W3044893488 hasConceptScore W3044893488C134306372 @default.
- W3044893488 hasConceptScore W3044893488C151201525 @default.
- W3044893488 hasConceptScore W3044893488C154945302 @default.
- W3044893488 hasConceptScore W3044893488C158622935 @default.
- W3044893488 hasConceptScore W3044893488C192562407 @default.