Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044905940> ?p ?o ?g. }
- W3044905940 endingPage "1816" @default.
- W3044905940 startingPage "1807" @default.
- W3044905940 abstract "To explore the electric vehicle networks in smart cities through big data analysis technology, this study utilizes K-means and fuzzy theory in big data analysis technology to construct an objective function-based fuzzy mean clustering algorithm theory (FCM). Then, the FCM algorithm is improved, and the electric vehicle network is simulated. The results show that in the analysis of network data transmission performance, when the probability of successful propagation is 100% and the λ value is between 0.01-0.05, it is closest to the actual result, and the data delay is the smallest. In the analysis of the route guidance effects, when facing congested road sections, the route guidance strategy of this study can restrain the spread of congestion effectively and achieve timely evacuation of traffic congestion. In the further analysis of the impact of different factors on traffic conditions, under route guidance, with the increase in market penetration rate (MPR) of devices, following rate (FR) of vehicles, and congestion level (CL), the improvement of the induction strategy becomes clearer, and greater economic benefits are achieved. This study has found that utilizing big data analysis technology to improve the electric vehicle transportation networks can reduce the network data transmission performance delay significantly and change the path to suppress the spread of congestion effectively, which has provided experimental references for the development of electric vehicle transportation networks." @default.
- W3044905940 created "2020-07-29" @default.
- W3044905940 creator A5042301216 @default.
- W3044905940 creator A5042920800 @default.
- W3044905940 creator A5062491950 @default.
- W3044905940 creator A5089407824 @default.
- W3044905940 date "2021-03-01" @default.
- W3044905940 modified "2023-10-12" @default.
- W3044905940 title "Big Data Analysis Technology for Electric Vehicle Networks in Smart Cities" @default.
- W3044905940 cites W2599557761 @default.
- W3044905940 cites W2603653327 @default.
- W3044905940 cites W2605270919 @default.
- W3044905940 cites W2607479420 @default.
- W3044905940 cites W2613846252 @default.
- W3044905940 cites W2665854550 @default.
- W3044905940 cites W2743146984 @default.
- W3044905940 cites W2769750997 @default.
- W3044905940 cites W2785346526 @default.
- W3044905940 cites W2787114603 @default.
- W3044905940 cites W2789452461 @default.
- W3044905940 cites W2789986657 @default.
- W3044905940 cites W2790661630 @default.
- W3044905940 cites W2798604353 @default.
- W3044905940 cites W2802594336 @default.
- W3044905940 cites W2833256931 @default.
- W3044905940 cites W2897322754 @default.
- W3044905940 cites W2901380461 @default.
- W3044905940 cites W2908996122 @default.
- W3044905940 cites W2911056119 @default.
- W3044905940 cites W2912525277 @default.
- W3044905940 cites W2921015455 @default.
- W3044905940 cites W2943251214 @default.
- W3044905940 cites W2946342495 @default.
- W3044905940 cites W2946933691 @default.
- W3044905940 cites W2947713636 @default.
- W3044905940 cites W2963996300 @default.
- W3044905940 cites W2964151984 @default.
- W3044905940 cites W2964334230 @default.
- W3044905940 cites W2969250087 @default.
- W3044905940 cites W2969938686 @default.
- W3044905940 cites W2971978647 @default.
- W3044905940 cites W2972061511 @default.
- W3044905940 cites W2972609628 @default.
- W3044905940 cites W2977354825 @default.
- W3044905940 cites W2991034715 @default.
- W3044905940 cites W3011028810 @default.
- W3044905940 cites W3102535235 @default.
- W3044905940 doi "https://doi.org/10.1109/tits.2020.3008884" @default.
- W3044905940 hasPublicationYear "2021" @default.
- W3044905940 type Work @default.
- W3044905940 sameAs 3044905940 @default.
- W3044905940 citedByCount "47" @default.
- W3044905940 countsByYear W30449059402020 @default.
- W3044905940 countsByYear W30449059402021 @default.
- W3044905940 countsByYear W30449059402022 @default.
- W3044905940 countsByYear W30449059402023 @default.
- W3044905940 crossrefType "journal-article" @default.
- W3044905940 hasAuthorship W3044905940A5042301216 @default.
- W3044905940 hasAuthorship W3044905940A5042920800 @default.
- W3044905940 hasAuthorship W3044905940A5062491950 @default.
- W3044905940 hasAuthorship W3044905940A5089407824 @default.
- W3044905940 hasConcept C121332964 @default.
- W3044905940 hasConcept C124101348 @default.
- W3044905940 hasConcept C127413603 @default.
- W3044905940 hasConcept C154945302 @default.
- W3044905940 hasConcept C158379750 @default.
- W3044905940 hasConcept C163258240 @default.
- W3044905940 hasConcept C195563490 @default.
- W3044905940 hasConcept C22212356 @default.
- W3044905940 hasConcept C2776422217 @default.
- W3044905940 hasConcept C2779888511 @default.
- W3044905940 hasConcept C31258907 @default.
- W3044905940 hasConcept C41008148 @default.
- W3044905940 hasConcept C47796450 @default.
- W3044905940 hasConcept C557945733 @default.
- W3044905940 hasConcept C58166 @default.
- W3044905940 hasConcept C62520636 @default.
- W3044905940 hasConcept C73555534 @default.
- W3044905940 hasConcept C75684735 @default.
- W3044905940 hasConcept C761482 @default.
- W3044905940 hasConcept C76155785 @default.
- W3044905940 hasConcept C79403827 @default.
- W3044905940 hasConceptScore W3044905940C121332964 @default.
- W3044905940 hasConceptScore W3044905940C124101348 @default.
- W3044905940 hasConceptScore W3044905940C127413603 @default.
- W3044905940 hasConceptScore W3044905940C154945302 @default.
- W3044905940 hasConceptScore W3044905940C158379750 @default.
- W3044905940 hasConceptScore W3044905940C163258240 @default.
- W3044905940 hasConceptScore W3044905940C195563490 @default.
- W3044905940 hasConceptScore W3044905940C22212356 @default.
- W3044905940 hasConceptScore W3044905940C2776422217 @default.
- W3044905940 hasConceptScore W3044905940C2779888511 @default.
- W3044905940 hasConceptScore W3044905940C31258907 @default.
- W3044905940 hasConceptScore W3044905940C41008148 @default.
- W3044905940 hasConceptScore W3044905940C47796450 @default.
- W3044905940 hasConceptScore W3044905940C557945733 @default.
- W3044905940 hasConceptScore W3044905940C58166 @default.
- W3044905940 hasConceptScore W3044905940C62520636 @default.