Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044946677> ?p ?o ?g. }
- W3044946677 abstract "NGS studies have uncovered an ever-growing catalog of human variation while leaving an enormous gap between observed variation and experimental characterization of variant function. High-throughput screens powered by NGS have greatly increased the rate of variant functionalization, but the development of comprehensive statistical methods to analyze screen data has lagged. In the massively parallel reporter assay (MPRA), short barcodes are counted by sequencing DNA libraries transfected into cells and the cell's output RNA in order to simultaneously measure the shifts in transcription induced by thousands of genetic variants. These counts present many statistical challenges, including overdispersion, depth dependence, and uncertain DNA concentrations. So far, the statistical methods used have been rudimentary, employing transformations on count level data and disregarding experimental and technical structure while failing to quantify uncertainty in the statistical model. We have developed an extensive framework for the analysis of NGS functionalization screens available as an R package called malacoda (available from github.com/andrewGhazi/malacoda). Our software implements a probabilistic, fully Bayesian model of screen data. The model uses the negative binomial distribution with gamma priors to model sequencing counts while accounting for effects from input library preparation and sequencing depth. The method leverages the high-throughput nature of the assay to estimate the priors empirically. External annotations such as ENCODE data or DeepSea predictions can also be incorporated to obtain more informative priors-a transformative capability for data integration. The package also includes quality control and utility functions, including automated barcode counting and visualization methods. To validate our method, we analyzed several datasets using malacoda and alternative MPRA analysis methods. These data include experiments from the literature, simulated assays, and primary MPRA data. We also used luciferase assays to experimentally validate several hits from our primary data, as well as variants for which the various methods disagree and variants detectable only with the aid of external annotations." @default.
- W3044946677 created "2020-07-29" @default.
- W3044946677 creator A5036509883 @default.
- W3044946677 creator A5044685010 @default.
- W3044946677 creator A5072387201 @default.
- W3044946677 creator A5086583333 @default.
- W3044946677 creator A5087273314 @default.
- W3044946677 date "2020-07-21" @default.
- W3044946677 modified "2023-09-24" @default.
- W3044946677 title "Bayesian modelling of high-throughput sequencing assays with malacoda" @default.
- W3044946677 cites W1969653234 @default.
- W3044946677 cites W1970910637 @default.
- W3044946677 cites W1995564704 @default.
- W3044946677 cites W2023386301 @default.
- W3044946677 cites W2099370598 @default.
- W3044946677 cites W2104549677 @default.
- W3044946677 cites W2117446594 @default.
- W3044946677 cites W2149137596 @default.
- W3044946677 cites W2179438025 @default.
- W3044946677 cites W2195359644 @default.
- W3044946677 cites W2198606573 @default.
- W3044946677 cites W2202976683 @default.
- W3044946677 cites W2259938310 @default.
- W3044946677 cites W2410975830 @default.
- W3044946677 cites W2412481123 @default.
- W3044946677 cites W2413629639 @default.
- W3044946677 cites W2560119881 @default.
- W3044946677 cites W2577537660 @default.
- W3044946677 cites W2790738458 @default.
- W3044946677 cites W2949641231 @default.
- W3044946677 cites W2952532495 @default.
- W3044946677 cites W2953031504 @default.
- W3044946677 cites W2966771245 @default.
- W3044946677 cites W2970956693 @default.
- W3044946677 cites W4248681815 @default.
- W3044946677 doi "https://doi.org/10.1371/journal.pcbi.1007504" @default.
- W3044946677 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7394446" @default.
- W3044946677 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32692749" @default.
- W3044946677 hasPublicationYear "2020" @default.
- W3044946677 type Work @default.
- W3044946677 sameAs 3044946677 @default.
- W3044946677 citedByCount "1" @default.
- W3044946677 countsByYear W30449466772021 @default.
- W3044946677 crossrefType "journal-article" @default.
- W3044946677 hasAuthorship W3044946677A5036509883 @default.
- W3044946677 hasAuthorship W3044946677A5044685010 @default.
- W3044946677 hasAuthorship W3044946677A5072387201 @default.
- W3044946677 hasAuthorship W3044946677A5086583333 @default.
- W3044946677 hasAuthorship W3044946677A5087273314 @default.
- W3044946677 hasBestOaLocation W30449466771 @default.
- W3044946677 hasConcept C100906024 @default.
- W3044946677 hasConcept C104317684 @default.
- W3044946677 hasConcept C105795698 @default.
- W3044946677 hasConcept C107673813 @default.
- W3044946677 hasConcept C111919701 @default.
- W3044946677 hasConcept C114289077 @default.
- W3044946677 hasConcept C124101348 @default.
- W3044946677 hasConcept C154945302 @default.
- W3044946677 hasConcept C160920958 @default.
- W3044946677 hasConcept C177769412 @default.
- W3044946677 hasConcept C193244246 @default.
- W3044946677 hasConcept C199360897 @default.
- W3044946677 hasConcept C2776841711 @default.
- W3044946677 hasConcept C2777904410 @default.
- W3044946677 hasConcept C2779694297 @default.
- W3044946677 hasConcept C33643355 @default.
- W3044946677 hasConcept C33923547 @default.
- W3044946677 hasConcept C41008148 @default.
- W3044946677 hasConcept C51679486 @default.
- W3044946677 hasConcept C54355233 @default.
- W3044946677 hasConcept C552990157 @default.
- W3044946677 hasConcept C70721500 @default.
- W3044946677 hasConcept C86803240 @default.
- W3044946677 hasConceptScore W3044946677C100906024 @default.
- W3044946677 hasConceptScore W3044946677C104317684 @default.
- W3044946677 hasConceptScore W3044946677C105795698 @default.
- W3044946677 hasConceptScore W3044946677C107673813 @default.
- W3044946677 hasConceptScore W3044946677C111919701 @default.
- W3044946677 hasConceptScore W3044946677C114289077 @default.
- W3044946677 hasConceptScore W3044946677C124101348 @default.
- W3044946677 hasConceptScore W3044946677C154945302 @default.
- W3044946677 hasConceptScore W3044946677C160920958 @default.
- W3044946677 hasConceptScore W3044946677C177769412 @default.
- W3044946677 hasConceptScore W3044946677C193244246 @default.
- W3044946677 hasConceptScore W3044946677C199360897 @default.
- W3044946677 hasConceptScore W3044946677C2776841711 @default.
- W3044946677 hasConceptScore W3044946677C2777904410 @default.
- W3044946677 hasConceptScore W3044946677C2779694297 @default.
- W3044946677 hasConceptScore W3044946677C33643355 @default.
- W3044946677 hasConceptScore W3044946677C33923547 @default.
- W3044946677 hasConceptScore W3044946677C41008148 @default.
- W3044946677 hasConceptScore W3044946677C51679486 @default.
- W3044946677 hasConceptScore W3044946677C54355233 @default.
- W3044946677 hasConceptScore W3044946677C552990157 @default.
- W3044946677 hasConceptScore W3044946677C70721500 @default.
- W3044946677 hasConceptScore W3044946677C86803240 @default.
- W3044946677 hasFunder F4320306080 @default.
- W3044946677 hasLocation W30449466771 @default.
- W3044946677 hasLocation W30449466772 @default.
- W3044946677 hasLocation W30449466773 @default.