Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044990034> ?p ?o ?g. }
- W3044990034 abstract "Abstract Recurrent cortical network dynamics plays a crucial role for sequential information processing in the brain. While the theoretical framework of reservoir computing provides a conceptual basis for the understanding of recurrent neural computation, it often requires manual adjustments of global network parameters, in particular of the spectral radius of the recurrent synaptic weight matrix. Being a mathematical and relatively complex quantity, the spectral radius is not readily accessible to biological neural networks, which generally adhere to the principle that information about the network state should either be encoded in local intrinsic dynamical quantities (e.g. membrane potentials), or transmitted via synaptic connectivity. We present two synaptic scaling rules for echo state networks that solely rely on locally accessible variables. Both rules work online, in the presence of a continuous stream of input signals. The first rule, termed flow control, is based on a local comparison between the mean squared recurrent membrane potential and the mean squared activity of the neuron itself. It is derived from a global scaling condition on the dynamic flow of neural activities and requires the separability of external and recurrent input currents. We gained further insight into the adaptation dynamics of flow control by using a mean field approximation on the variances of neural activities that allowed us to describe the interplay between network activity and adaptation as a two-dimensional dynamical system. The second rule that we considered, variance control, directly regulates the variance of neural activities by locally scaling the recurrent synaptic weights. The target set point of this homeostatic mechanism is dynamically determined as a function of the variance of the locally measured external input. This functional relation was derived from the same mean-field approach that was used to describe the approximate dynamics of flow control. The effectiveness of the presented mechanisms was tested numerically using different external input protocols. The network performance after adaptation was evaluated by training the network to perform a time delayed XOR operation on binary sequences. As our main result, we found that flow control can reliably regulate the spectral radius under different input statistics, but precise tuning is negatively affected by interneural correlations. Furthermore, flow control showed a consistent task performance over a wide range of input strengths/variances. Variance control, on the other side, did not yield the desired spectral radii with the same precision. Moreover, task performance was less consistent across different input strengths. Given the better performance and simpler mathematical form of flow control, we concluded that a local control of the spectral radius via an implicit adaptation scheme is a realistic alternative to approaches using classical “set point” homeostatic feedback controls of neural firing. Author summary How can a neural network control its recurrent synaptic strengths such that network dynamics are optimal for sequential information processing? An important quantity in this respect, the spectral radius of the recurrent synaptic weight matrix, is a non-local quantity. Therefore, a direct calculation of the spectral radius is not feasible for biological networks. However, we show that there exist a local and biologically plausible adaptation mechanism, flow control, which allows to control the recurrent weight spectral radius while the network is operating under the influence of external inputs. Flow control is based on a theorem of random matrix theory, which is applicable if inter-synaptic correlations are weak. We apply the new adaption rule to echo-state networks having the task to perform a time-delayed XOR operation on random binary input sequences. We find that flow-controlled networks can adapt to a wide range of input strengths while retaining essentially constant task performance." @default.
- W3044990034 created "2020-07-29" @default.
- W3044990034 creator A5010102224 @default.
- W3044990034 creator A5041243848 @default.
- W3044990034 date "2020-07-21" @default.
- W3044990034 modified "2023-09-26" @default.
- W3044990034 title "Local homeostatic regulation of the spectral radius of echo-state networks" @default.
- W3044990034 cites W1213002772 @default.
- W3044990034 cites W1514853588 @default.
- W3044990034 cites W1561847052 @default.
- W3044990034 cites W1856316989 @default.
- W3044990034 cites W1978845507 @default.
- W3044990034 cites W1979250220 @default.
- W3044990034 cites W1987299193 @default.
- W3044990034 cites W1989132237 @default.
- W3044990034 cites W1991630689 @default.
- W3044990034 cites W2000470900 @default.
- W3044990034 cites W2023079245 @default.
- W3044990034 cites W2024689049 @default.
- W3044990034 cites W2029967456 @default.
- W3044990034 cites W2038625427 @default.
- W3044990034 cites W2040003929 @default.
- W3044990034 cites W2042489792 @default.
- W3044990034 cites W2042765770 @default.
- W3044990034 cites W2043964487 @default.
- W3044990034 cites W2046509362 @default.
- W3044990034 cites W2047535883 @default.
- W3044990034 cites W2057755457 @default.
- W3044990034 cites W2060581589 @default.
- W3044990034 cites W2103179919 @default.
- W3044990034 cites W2108384452 @default.
- W3044990034 cites W2109214063 @default.
- W3044990034 cites W2120475512 @default.
- W3044990034 cites W2135908272 @default.
- W3044990034 cites W2145297462 @default.
- W3044990034 cites W2157560371 @default.
- W3044990034 cites W2159281614 @default.
- W3044990034 cites W2159687800 @default.
- W3044990034 cites W2171865010 @default.
- W3044990034 cites W2172274087 @default.
- W3044990034 cites W2295142501 @default.
- W3044990034 cites W2331219843 @default.
- W3044990034 cites W2414006382 @default.
- W3044990034 cites W2515529155 @default.
- W3044990034 cites W2520172604 @default.
- W3044990034 cites W2577076170 @default.
- W3044990034 cites W2611445505 @default.
- W3044990034 cites W2952520255 @default.
- W3044990034 cites W299532404 @default.
- W3044990034 cites W3100077639 @default.
- W3044990034 cites W3101122059 @default.
- W3044990034 doi "https://doi.org/10.1101/2020.07.21.213660" @default.
- W3044990034 hasPublicationYear "2020" @default.
- W3044990034 type Work @default.
- W3044990034 sameAs 3044990034 @default.
- W3044990034 citedByCount "1" @default.
- W3044990034 countsByYear W30449900342021 @default.
- W3044990034 crossrefType "posted-content" @default.
- W3044990034 hasAuthorship W3044990034A5010102224 @default.
- W3044990034 hasAuthorship W3044990034A5041243848 @default.
- W3044990034 hasBestOaLocation W30449900341 @default.
- W3044990034 hasConcept C11413529 @default.
- W3044990034 hasConcept C117838684 @default.
- W3044990034 hasConcept C118615104 @default.
- W3044990034 hasConcept C120665830 @default.
- W3044990034 hasConcept C121332964 @default.
- W3044990034 hasConcept C121864883 @default.
- W3044990034 hasConcept C123757187 @default.
- W3044990034 hasConcept C135796866 @default.
- W3044990034 hasConcept C139807058 @default.
- W3044990034 hasConcept C140532419 @default.
- W3044990034 hasConcept C147168706 @default.
- W3044990034 hasConcept C154945302 @default.
- W3044990034 hasConcept C158693339 @default.
- W3044990034 hasConcept C169760540 @default.
- W3044990034 hasConcept C172025690 @default.
- W3044990034 hasConcept C2524010 @default.
- W3044990034 hasConcept C33923547 @default.
- W3044990034 hasConcept C41008148 @default.
- W3044990034 hasConcept C45374587 @default.
- W3044990034 hasConcept C50644808 @default.
- W3044990034 hasConcept C62520636 @default.
- W3044990034 hasConcept C66949984 @default.
- W3044990034 hasConcept C86803240 @default.
- W3044990034 hasConcept C99844830 @default.
- W3044990034 hasConceptScore W3044990034C11413529 @default.
- W3044990034 hasConceptScore W3044990034C117838684 @default.
- W3044990034 hasConceptScore W3044990034C118615104 @default.
- W3044990034 hasConceptScore W3044990034C120665830 @default.
- W3044990034 hasConceptScore W3044990034C121332964 @default.
- W3044990034 hasConceptScore W3044990034C121864883 @default.
- W3044990034 hasConceptScore W3044990034C123757187 @default.
- W3044990034 hasConceptScore W3044990034C135796866 @default.
- W3044990034 hasConceptScore W3044990034C139807058 @default.
- W3044990034 hasConceptScore W3044990034C140532419 @default.
- W3044990034 hasConceptScore W3044990034C147168706 @default.
- W3044990034 hasConceptScore W3044990034C154945302 @default.
- W3044990034 hasConceptScore W3044990034C158693339 @default.
- W3044990034 hasConceptScore W3044990034C169760540 @default.
- W3044990034 hasConceptScore W3044990034C172025690 @default.