Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045066320> ?p ?o ?g. }
- W3045066320 endingPage "e19962" @default.
- W3045066320 startingPage "e19962" @default.
- W3045066320 abstract "Background Schizophrenia spectrum disorders (SSDs) are chronic conditions, but the severity of symptomatic experiences and functional impairments vacillate over the course of illness. Developing unobtrusive remote monitoring systems to detect early warning signs of impending symptomatic relapses would allow clinicians to intervene before the patient’s condition worsens. Objective In this study, we aim to create the first models, exclusively using passive sensing data from a smartphone, to predict behavioral anomalies that could indicate early warning signs of a psychotic relapse. Methods Data used to train and test the models were collected during the CrossCheck study. Hourly features derived from smartphone passive sensing data were extracted from 60 patients with SSDs (42 nonrelapse and 18 relapse >1 time throughout the study) and used to train models and test performance. We trained 2 types of encoder-decoder neural network models and a clustering-based local outlier factor model to predict behavioral anomalies that occurred within the 30-day period before a participant's date of relapse (the near relapse period). Models were trained to recreate participant behavior on days of relative health (DRH, outside of the near relapse period), following which a threshold to the recreation error was applied to predict anomalies. The neural network model architecture and the percentage of relapse participant data used to train all models were varied. Results A total of 20,137 days of collected data were analyzed, with 726 days of data (0.037%) within any 30-day near relapse period. The best performing model used a fully connected neural network autoencoder architecture and achieved a median sensitivity of 0.25 (IQR 0.15-1.00) and specificity of 0.88 (IQR 0.14-0.96; a median 108% increase in behavioral anomalies near relapse). We conducted a post hoc analysis using the best performing model to identify behavioral features that had a medium-to-large effect (Cohen d>0.5) in distinguishing anomalies near relapse from DRH among 4 participants who relapsed multiple times throughout the study. Qualitative validation using clinical notes collected during the original CrossCheck study showed that the identified features from our analysis were presented to clinicians during relapse events. Conclusions Our proposed method predicted a higher rate of anomalies in patients with SSDs within the 30-day near relapse period and can be used to uncover individual-level behaviors that change before relapse. This approach will enable technologists and clinicians to build unobtrusive digital mental health tools that can predict incipient relapse in SSDs." @default.
- W3045066320 created "2020-07-29" @default.
- W3045066320 creator A5001180818 @default.
- W3045066320 creator A5004031088 @default.
- W3045066320 creator A5004949920 @default.
- W3045066320 creator A5025137249 @default.
- W3045066320 creator A5025925142 @default.
- W3045066320 creator A5027409441 @default.
- W3045066320 creator A5040016165 @default.
- W3045066320 creator A5046665314 @default.
- W3045066320 creator A5064857767 @default.
- W3045066320 date "2020-08-31" @default.
- W3045066320 modified "2023-10-11" @default.
- W3045066320 title "Predicting Early Warning Signs of Psychotic Relapse From Passive Sensing Data: An Approach Using Encoder-Decoder Neural Networks" @default.
- W3045066320 cites W1644997609 @default.
- W3045066320 cites W1750132612 @default.
- W3045066320 cites W1859669582 @default.
- W3045066320 cites W1894490285 @default.
- W3045066320 cites W1966445952 @default.
- W3045066320 cites W1969060266 @default.
- W3045066320 cites W1991189801 @default.
- W3045066320 cites W1995923837 @default.
- W3045066320 cites W2005314874 @default.
- W3045066320 cites W2007932522 @default.
- W3045066320 cites W2008515775 @default.
- W3045066320 cites W2020844317 @default.
- W3045066320 cites W2026124805 @default.
- W3045066320 cites W2060774914 @default.
- W3045066320 cites W2066806488 @default.
- W3045066320 cites W2071005152 @default.
- W3045066320 cites W2078339310 @default.
- W3045066320 cites W2099761330 @default.
- W3045066320 cites W2107026277 @default.
- W3045066320 cites W2122646361 @default.
- W3045066320 cites W2131774270 @default.
- W3045066320 cites W2138159009 @default.
- W3045066320 cites W2143962796 @default.
- W3045066320 cites W2156567116 @default.
- W3045066320 cites W2161897659 @default.
- W3045066320 cites W2165397843 @default.
- W3045066320 cites W2170631467 @default.
- W3045066320 cites W2244501064 @default.
- W3045066320 cites W2267837598 @default.
- W3045066320 cites W2346948912 @default.
- W3045066320 cites W2410376861 @default.
- W3045066320 cites W2516086211 @default.
- W3045066320 cites W2562319768 @default.
- W3045066320 cites W2584324318 @default.
- W3045066320 cites W2592797645 @default.
- W3045066320 cites W2604699010 @default.
- W3045066320 cites W2612922341 @default.
- W3045066320 cites W2613050761 @default.
- W3045066320 cites W2756418505 @default.
- W3045066320 cites W2759593469 @default.
- W3045066320 cites W2792224659 @default.
- W3045066320 cites W2887728410 @default.
- W3045066320 cites W2887828378 @default.
- W3045066320 cites W2889620547 @default.
- W3045066320 cites W2919115771 @default.
- W3045066320 cites W2933433471 @default.
- W3045066320 cites W2962790223 @default.
- W3045066320 cites W2978761732 @default.
- W3045066320 cites W4237040490 @default.
- W3045066320 cites W4253343410 @default.
- W3045066320 cites W4254182148 @default.
- W3045066320 doi "https://doi.org/10.2196/19962" @default.
- W3045066320 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7490673" @default.
- W3045066320 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32865506" @default.
- W3045066320 hasPublicationYear "2020" @default.
- W3045066320 type Work @default.
- W3045066320 sameAs 3045066320 @default.
- W3045066320 citedByCount "47" @default.
- W3045066320 countsByYear W30450663202020 @default.
- W3045066320 countsByYear W30450663202021 @default.
- W3045066320 countsByYear W30450663202022 @default.
- W3045066320 countsByYear W30450663202023 @default.
- W3045066320 crossrefType "journal-article" @default.
- W3045066320 hasAuthorship W3045066320A5001180818 @default.
- W3045066320 hasAuthorship W3045066320A5004031088 @default.
- W3045066320 hasAuthorship W3045066320A5004949920 @default.
- W3045066320 hasAuthorship W3045066320A5025137249 @default.
- W3045066320 hasAuthorship W3045066320A5025925142 @default.
- W3045066320 hasAuthorship W3045066320A5027409441 @default.
- W3045066320 hasAuthorship W3045066320A5040016165 @default.
- W3045066320 hasAuthorship W3045066320A5046665314 @default.
- W3045066320 hasAuthorship W3045066320A5064857767 @default.
- W3045066320 hasBestOaLocation W30450663201 @default.
- W3045066320 hasConcept C154945302 @default.
- W3045066320 hasConcept C41008148 @default.
- W3045066320 hasConcept C50644808 @default.
- W3045066320 hasConcept C71924100 @default.
- W3045066320 hasConceptScore W3045066320C154945302 @default.
- W3045066320 hasConceptScore W3045066320C41008148 @default.
- W3045066320 hasConceptScore W3045066320C50644808 @default.
- W3045066320 hasConceptScore W3045066320C71924100 @default.
- W3045066320 hasIssue "8" @default.
- W3045066320 hasLocation W30450663201 @default.
- W3045066320 hasLocation W30450663202 @default.