Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045128192> ?p ?o ?g. }
- W3045128192 abstract "Abstract We evaluated the diagnostic performance and generalizability of traditional machine learning and deep learning models for distinguishing glioblastoma from single brain metastasis using radiomics. The training and external validation cohorts comprised 166 (109 glioblastomas and 57 metastases) and 82 (50 glioblastomas and 32 metastases) patients, respectively. Two-hundred-and-sixty-five radiomic features were extracted from semiautomatically segmented regions on contrast-enhancing and peritumoral T2 hyperintense masks and used as input data. For each of a deep neural network (DNN) and seven traditional machine learning classifiers combined with one of five feature selection methods, hyperparameters were optimized through tenfold cross-validation in the training cohort. The diagnostic performance of the optimized models and two neuroradiologists was tested in the validation cohort for distinguishing glioblastoma from metastasis. In the external validation, DNN showed the highest diagnostic performance, with an area under receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy of 0.956 (95% confidence interval [CI], 0.918–0.990), 90.6% (95% CI, 80.5–100), 88.0% (95% CI, 79.0–97.0), and 89.0% (95% CI, 82.3–95.8), respectively, compared to the best-performing traditional machine learning model (adaptive boosting combined with tree-based feature selection; AUC, 0.890 (95% CI, 0.823–0.947)) and human readers (AUC, 0.774 [95% CI, 0.685–0.852] and 0.904 [95% CI, 0.852–0.951]). The results demonstrated deep learning using radiomic features can be useful for distinguishing glioblastoma from metastasis with good generalizability." @default.
- W3045128192 created "2020-07-29" @default.
- W3045128192 creator A5007870374 @default.
- W3045128192 creator A5011900177 @default.
- W3045128192 creator A5020189698 @default.
- W3045128192 creator A5034889378 @default.
- W3045128192 creator A5035865220 @default.
- W3045128192 creator A5042526369 @default.
- W3045128192 creator A5070250757 @default.
- W3045128192 creator A5082641741 @default.
- W3045128192 creator A5083774696 @default.
- W3045128192 date "2020-07-21" @default.
- W3045128192 modified "2023-10-12" @default.
- W3045128192 title "Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation" @default.
- W3045128192 cites W1548288608 @default.
- W3045128192 cites W1973233831 @default.
- W3045128192 cites W1976628810 @default.
- W3045128192 cites W1984249909 @default.
- W3045128192 cites W2007910632 @default.
- W3045128192 cites W2008368065 @default.
- W3045128192 cites W2016908822 @default.
- W3045128192 cites W2045181217 @default.
- W3045128192 cites W2087539198 @default.
- W3045128192 cites W2103739917 @default.
- W3045128192 cites W2111389142 @default.
- W3045128192 cites W2143065358 @default.
- W3045128192 cites W2147018849 @default.
- W3045128192 cites W2158757066 @default.
- W3045128192 cites W2160382843 @default.
- W3045128192 cites W2166219471 @default.
- W3045128192 cites W2168083503 @default.
- W3045128192 cites W2174661749 @default.
- W3045128192 cites W2312732917 @default.
- W3045128192 cites W2465688795 @default.
- W3045128192 cites W2519238003 @default.
- W3045128192 cites W2531051695 @default.
- W3045128192 cites W2580767461 @default.
- W3045128192 cites W2590692105 @default.
- W3045128192 cites W2608436322 @default.
- W3045128192 cites W2610403529 @default.
- W3045128192 cites W2613777097 @default.
- W3045128192 cites W2617669016 @default.
- W3045128192 cites W2792549713 @default.
- W3045128192 cites W2795672870 @default.
- W3045128192 cites W2802159733 @default.
- W3045128192 cites W2808173329 @default.
- W3045128192 cites W2892929309 @default.
- W3045128192 cites W2900530921 @default.
- W3045128192 cites W2908536554 @default.
- W3045128192 cites W2911964244 @default.
- W3045128192 cites W2919115771 @default.
- W3045128192 cites W2928374940 @default.
- W3045128192 cites W2932988231 @default.
- W3045128192 cites W2998789541 @default.
- W3045128192 doi "https://doi.org/10.1038/s41598-020-68980-6" @default.
- W3045128192 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7374174" @default.
- W3045128192 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32694637" @default.
- W3045128192 hasPublicationYear "2020" @default.
- W3045128192 type Work @default.
- W3045128192 sameAs 3045128192 @default.
- W3045128192 citedByCount "51" @default.
- W3045128192 countsByYear W30451281922020 @default.
- W3045128192 countsByYear W30451281922021 @default.
- W3045128192 countsByYear W30451281922022 @default.
- W3045128192 countsByYear W30451281922023 @default.
- W3045128192 crossrefType "journal-article" @default.
- W3045128192 hasAuthorship W3045128192A5007870374 @default.
- W3045128192 hasAuthorship W3045128192A5011900177 @default.
- W3045128192 hasAuthorship W3045128192A5020189698 @default.
- W3045128192 hasAuthorship W3045128192A5034889378 @default.
- W3045128192 hasAuthorship W3045128192A5035865220 @default.
- W3045128192 hasAuthorship W3045128192A5042526369 @default.
- W3045128192 hasAuthorship W3045128192A5070250757 @default.
- W3045128192 hasAuthorship W3045128192A5082641741 @default.
- W3045128192 hasAuthorship W3045128192A5083774696 @default.
- W3045128192 hasBestOaLocation W30451281921 @default.
- W3045128192 hasConcept C105795698 @default.
- W3045128192 hasConcept C108583219 @default.
- W3045128192 hasConcept C119857082 @default.
- W3045128192 hasConcept C121608353 @default.
- W3045128192 hasConcept C126322002 @default.
- W3045128192 hasConcept C148483581 @default.
- W3045128192 hasConcept C154945302 @default.
- W3045128192 hasConcept C27158222 @default.
- W3045128192 hasConcept C27181475 @default.
- W3045128192 hasConcept C2776194525 @default.
- W3045128192 hasConcept C2778164965 @default.
- W3045128192 hasConcept C2778559731 @default.
- W3045128192 hasConcept C2779013556 @default.
- W3045128192 hasConcept C33923547 @default.
- W3045128192 hasConcept C41008148 @default.
- W3045128192 hasConcept C44249647 @default.
- W3045128192 hasConcept C502942594 @default.
- W3045128192 hasConcept C50644808 @default.
- W3045128192 hasConcept C58471807 @default.
- W3045128192 hasConcept C71924100 @default.
- W3045128192 hasConceptScore W3045128192C105795698 @default.
- W3045128192 hasConceptScore W3045128192C108583219 @default.
- W3045128192 hasConceptScore W3045128192C119857082 @default.
- W3045128192 hasConceptScore W3045128192C121608353 @default.