Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045131306> ?p ?o ?g. }
- W3045131306 endingPage "8826" @default.
- W3045131306 startingPage "8815" @default.
- W3045131306 abstract "Abstract Food web dynamics are vital in shaping the functional ecology of ecosystems. However, trophic ecology is still in its infancy in groundwater ecosystems due to the cryptic nature of these environments. To unravel trophic interactions between subterranean biota, we applied an interdisciplinary Bayesian mixing model design (multi‐factor BMM) based on the integration of faunal C and N bulk tissue stable isotope data (δ 13 C and δ 15 N) with radiocarbon data (Δ 14 C), and prior information from metagenomic analyses. We further compared outcomes from multi‐factor BMM with a conventional isotope double proxy mixing model (SIA BMM), triple proxy (δ 13 C, δ 15 N, and Δ 14 C, multi‐proxy BMM), and double proxy combined with DNA prior information (SIA + DNA BMM) designs. Three species of subterranean beetles ( Paroster macrosturtensis , Paroster mesosturtensis, and Paroster microsturtensis ) and their main prey items Chiltoniidae amphipods (AM1: Scutachiltonia axfordi and AM2: Yilgarniella sturtensis ), cyclopoids and harpacticoids from a calcrete in Western Australia were targeted. Diet estimations from stable isotope only models (SIA BMM) indicated homogeneous patterns with modest preferences for amphipods as prey items. Multi‐proxy BMM suggested increased—and species‐specific—predatory pressures on amphipods coupled with high rates of scavenging/predation on sister species. SIA + DNA BMM showed marked preferences for amphipods AM1 and AM2, and reduced interspecific scavenging/predation on Paroster species. Multi‐factorial BMM revealed the most precise estimations (lower overall SD and very marginal beetles' interspecific interactions), indicating consistent preferences for amphipods AM1 in all the beetles' diets. Incorporation of genetic priors allowed crucial refining of the feeding preferences, while integration of more expensive radiocarbon data as a third proxy (when combined with genetic data) produced more precise outcomes but close dietary reconstruction to that from SIA + DNA BMM. Further multidisciplinary modeling from other groundwater environments will help elucidate the potential behind these designs and bring light to the feeding ecology of one the most vital ecosystems worldwide." @default.
- W3045131306 created "2020-07-29" @default.
- W3045131306 creator A5005515771 @default.
- W3045131306 creator A5007049128 @default.
- W3045131306 creator A5020739932 @default.
- W3045131306 creator A5020835261 @default.
- W3045131306 creator A5029250858 @default.
- W3045131306 creator A5048093937 @default.
- W3045131306 creator A5060709951 @default.
- W3045131306 creator A5064060376 @default.
- W3045131306 creator A5077277888 @default.
- W3045131306 creator A5082852673 @default.
- W3045131306 date "2020-07-20" @default.
- W3045131306 modified "2023-10-08" @default.
- W3045131306 title "Refining trophic dynamics through multi‐factor Bayesian mixing models: A case study of subterranean beetles" @default.
- W3045131306 cites W1517555081 @default.
- W3045131306 cites W1561497130 @default.
- W3045131306 cites W1600837628 @default.
- W3045131306 cites W1653926037 @default.
- W3045131306 cites W1896456407 @default.
- W3045131306 cites W1973573508 @default.
- W3045131306 cites W1977530412 @default.
- W3045131306 cites W1990276193 @default.
- W3045131306 cites W1991535029 @default.
- W3045131306 cites W1993139939 @default.
- W3045131306 cites W1994571624 @default.
- W3045131306 cites W2010354546 @default.
- W3045131306 cites W2013879148 @default.
- W3045131306 cites W2025489494 @default.
- W3045131306 cites W2031468096 @default.
- W3045131306 cites W2051791554 @default.
- W3045131306 cites W2056153447 @default.
- W3045131306 cites W2057058000 @default.
- W3045131306 cites W2071754162 @default.
- W3045131306 cites W2072431552 @default.
- W3045131306 cites W2085825340 @default.
- W3045131306 cites W2086053402 @default.
- W3045131306 cites W2126717016 @default.
- W3045131306 cites W2142386151 @default.
- W3045131306 cites W2166685252 @default.
- W3045131306 cites W2174011230 @default.
- W3045131306 cites W2260541962 @default.
- W3045131306 cites W2293759920 @default.
- W3045131306 cites W2317845212 @default.
- W3045131306 cites W2561358511 @default.
- W3045131306 cites W2592128209 @default.
- W3045131306 cites W2727843391 @default.
- W3045131306 cites W2747607485 @default.
- W3045131306 cites W2752404976 @default.
- W3045131306 cites W2770292165 @default.
- W3045131306 cites W283890424 @default.
- W3045131306 cites W2889170734 @default.
- W3045131306 cites W2889967960 @default.
- W3045131306 cites W2909336791 @default.
- W3045131306 cites W2913515645 @default.
- W3045131306 cites W2927805038 @default.
- W3045131306 cites W2973592965 @default.
- W3045131306 cites W2980641456 @default.
- W3045131306 cites W3000310372 @default.
- W3045131306 cites W3022706003 @default.
- W3045131306 cites W37529239 @default.
- W3045131306 cites W4240278298 @default.
- W3045131306 cites W4248624515 @default.
- W3045131306 cites W4250014022 @default.
- W3045131306 cites W4294555410 @default.
- W3045131306 cites W91799730 @default.
- W3045131306 doi "https://doi.org/10.1002/ece3.6580" @default.
- W3045131306 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7452819" @default.
- W3045131306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32884659" @default.
- W3045131306 hasPublicationYear "2020" @default.
- W3045131306 type Work @default.
- W3045131306 sameAs 3045131306 @default.
- W3045131306 citedByCount "10" @default.
- W3045131306 countsByYear W30451313062021 @default.
- W3045131306 countsByYear W30451313062022 @default.
- W3045131306 countsByYear W30451313062023 @default.
- W3045131306 crossrefType "journal-article" @default.
- W3045131306 hasAuthorship W3045131306A5005515771 @default.
- W3045131306 hasAuthorship W3045131306A5007049128 @default.
- W3045131306 hasAuthorship W3045131306A5020739932 @default.
- W3045131306 hasAuthorship W3045131306A5020835261 @default.
- W3045131306 hasAuthorship W3045131306A5029250858 @default.
- W3045131306 hasAuthorship W3045131306A5048093937 @default.
- W3045131306 hasAuthorship W3045131306A5060709951 @default.
- W3045131306 hasAuthorship W3045131306A5064060376 @default.
- W3045131306 hasAuthorship W3045131306A5077277888 @default.
- W3045131306 hasAuthorship W3045131306A5082852673 @default.
- W3045131306 hasBestOaLocation W30451313061 @default.
- W3045131306 hasConcept C109931610 @default.
- W3045131306 hasConcept C110872660 @default.
- W3045131306 hasConcept C188382862 @default.
- W3045131306 hasConcept C18903297 @default.
- W3045131306 hasConcept C29450965 @default.
- W3045131306 hasConcept C63644423 @default.
- W3045131306 hasConcept C72958200 @default.
- W3045131306 hasConcept C86803240 @default.
- W3045131306 hasConceptScore W3045131306C109931610 @default.
- W3045131306 hasConceptScore W3045131306C110872660 @default.