Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045175093> ?p ?o ?g. }
- W3045175093 endingPage "1" @default.
- W3045175093 startingPage "1" @default.
- W3045175093 abstract "Fusing the pertinence of natural scene statistics-based methods and the ubiquity of convolutional neural network-based methods, a no-reference image quality assessment (IQA) method fusing deep learning and statistical visual features for no-reference image quality assessment (FDSVIQA) is proposed. For the statistical visual features, a local normalized luminance map and a local normalized local binary pattern (LBP) map of the image are constructed, and the local normalized luminance features and the gradient-weighted local normalized LBP features are extracted on the two maps, respectively. These two kinds of features are concatenated to build the image statistical visual features. For deep learning, the local normalized luminance block and the localized normalized LBP block are input into a double-path deep learning network, and the statistical visual features are input into the deep learning network to be integrated with the depth features. After learning and training, IQA is achieved. The performance of the proposed FDSVIQA algorithm is tested on the Laboratory for Image and Video Engineering (LIVE), LIVE Multiply Distorted Image Quality Database, and Multiply Distortion Optics Remote Sensing Image databases. Experimental results show that the FDSVIQA algorithm has excellent subjective and objective consistency and good robustness for both distorted natural images and distorted remote sensing images. In addition, the FDSVIQA has database independence." @default.
- W3045175093 created "2020-07-29" @default.
- W3045175093 creator A5017227883 @default.
- W3045175093 creator A5043001105 @default.
- W3045175093 creator A5043874743 @default.
- W3045175093 creator A5048998215 @default.
- W3045175093 creator A5055987663 @default.
- W3045175093 creator A5061524454 @default.
- W3045175093 creator A5072638565 @default.
- W3045175093 date "2020-07-21" @default.
- W3045175093 modified "2023-09-23" @default.
- W3045175093 title "Fusing deep learning and statistical visual features for no-reference image quality assessment" @default.
- W3045175093 cites W1481794564 @default.
- W3045175093 cites W1977246677 @default.
- W3045175093 cites W1978190504 @default.
- W3045175093 cites W1982471090 @default.
- W3045175093 cites W2046119925 @default.
- W3045175093 cites W2051596736 @default.
- W3045175093 cites W2073623229 @default.
- W3045175093 cites W2092264651 @default.
- W3045175093 cites W2133665775 @default.
- W3045175093 cites W2141983208 @default.
- W3045175093 cites W2161907179 @default.
- W3045175093 cites W2169037956 @default.
- W3045175093 cites W2169449449 @default.
- W3045175093 cites W2172058006 @default.
- W3045175093 cites W2258211000 @default.
- W3045175093 cites W2303076655 @default.
- W3045175093 cites W2500825094 @default.
- W3045175093 cites W2510726567 @default.
- W3045175093 cites W2546302380 @default.
- W3045175093 cites W2546855109 @default.
- W3045175093 cites W2566149141 @default.
- W3045175093 cites W2737134362 @default.
- W3045175093 cites W2914182766 @default.
- W3045175093 cites W2947118001 @default.
- W3045175093 cites W3100498948 @default.
- W3045175093 cites W3102733987 @default.
- W3045175093 cites W4232660822 @default.
- W3045175093 doi "https://doi.org/10.1117/1.jei.29.4.043011" @default.
- W3045175093 hasPublicationYear "2020" @default.
- W3045175093 type Work @default.
- W3045175093 sameAs 3045175093 @default.
- W3045175093 citedByCount "1" @default.
- W3045175093 countsByYear W30451750932022 @default.
- W3045175093 crossrefType "journal-article" @default.
- W3045175093 hasAuthorship W3045175093A5017227883 @default.
- W3045175093 hasAuthorship W3045175093A5043001105 @default.
- W3045175093 hasAuthorship W3045175093A5043874743 @default.
- W3045175093 hasAuthorship W3045175093A5048998215 @default.
- W3045175093 hasAuthorship W3045175093A5055987663 @default.
- W3045175093 hasAuthorship W3045175093A5061524454 @default.
- W3045175093 hasAuthorship W3045175093A5072638565 @default.
- W3045175093 hasConcept C104317684 @default.
- W3045175093 hasConcept C108583219 @default.
- W3045175093 hasConcept C115961682 @default.
- W3045175093 hasConcept C126780896 @default.
- W3045175093 hasConcept C153180895 @default.
- W3045175093 hasConcept C154945302 @default.
- W3045175093 hasConcept C169760540 @default.
- W3045175093 hasConcept C185592680 @default.
- W3045175093 hasConcept C194257627 @default.
- W3045175093 hasConcept C197654239 @default.
- W3045175093 hasConcept C2524010 @default.
- W3045175093 hasConcept C26760741 @default.
- W3045175093 hasConcept C2776257435 @default.
- W3045175093 hasConcept C2777210771 @default.
- W3045175093 hasConcept C31258907 @default.
- W3045175093 hasConcept C31972630 @default.
- W3045175093 hasConcept C33923547 @default.
- W3045175093 hasConcept C41008148 @default.
- W3045175093 hasConcept C50644808 @default.
- W3045175093 hasConcept C53533937 @default.
- W3045175093 hasConcept C55020928 @default.
- W3045175093 hasConcept C55493867 @default.
- W3045175093 hasConcept C63479239 @default.
- W3045175093 hasConcept C73313986 @default.
- W3045175093 hasConcept C81363708 @default.
- W3045175093 hasConcept C86803240 @default.
- W3045175093 hasConcept C87335442 @default.
- W3045175093 hasConceptScore W3045175093C104317684 @default.
- W3045175093 hasConceptScore W3045175093C108583219 @default.
- W3045175093 hasConceptScore W3045175093C115961682 @default.
- W3045175093 hasConceptScore W3045175093C126780896 @default.
- W3045175093 hasConceptScore W3045175093C153180895 @default.
- W3045175093 hasConceptScore W3045175093C154945302 @default.
- W3045175093 hasConceptScore W3045175093C169760540 @default.
- W3045175093 hasConceptScore W3045175093C185592680 @default.
- W3045175093 hasConceptScore W3045175093C194257627 @default.
- W3045175093 hasConceptScore W3045175093C197654239 @default.
- W3045175093 hasConceptScore W3045175093C2524010 @default.
- W3045175093 hasConceptScore W3045175093C26760741 @default.
- W3045175093 hasConceptScore W3045175093C2776257435 @default.
- W3045175093 hasConceptScore W3045175093C2777210771 @default.
- W3045175093 hasConceptScore W3045175093C31258907 @default.
- W3045175093 hasConceptScore W3045175093C31972630 @default.
- W3045175093 hasConceptScore W3045175093C33923547 @default.
- W3045175093 hasConceptScore W3045175093C41008148 @default.