Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045245556> ?p ?o ?g. }
- W3045245556 endingPage "106285" @default.
- W3045245556 startingPage "106285" @default.
- W3045245556 abstract "Abstract Unsupervised domain adaptation aims to address the problem in which the source data and target data are related but distributed differently. A widely-used two-stage strategy is to learn a domain-invariant subspace, and then train a cross-domain classifier on the resulting subspace. In this paper, we propose a single-stage domain adaption approach for joint subspace learning and discriminative learning. Specifically, a domain-invariant subspace and a cross-domain classifier are progressively learnt in a self-paced learning fashion. To avoid unlabeled target data dominating the overall loss and misleading model training, we progressively include more target data from “easy” to “complex” to optimize our model. Specifically, we propose an alternative optimization algorithm to efficiently find a reasonable solution for our task. Extensive experiments are conducted on multiple standard benchmarks to verify the effectiveness of the proposed approach. The results demonstrate that our model can outperform state-of-the-art non-deep domain adaptation methods." @default.
- W3045245556 created "2020-07-29" @default.
- W3045245556 creator A5007208723 @default.
- W3045245556 creator A5012772285 @default.
- W3045245556 creator A5014196059 @default.
- W3045245556 creator A5049531727 @default.
- W3045245556 creator A5050996840 @default.
- W3045245556 creator A5063959214 @default.
- W3045245556 creator A5070982537 @default.
- W3045245556 date "2020-10-01" @default.
- W3045245556 modified "2023-10-05" @default.
- W3045245556 title "Joint subspace and discriminative learning for self-paced domain adaptation" @default.
- W3045245556 cites W1722318740 @default.
- W3045245556 cites W1934241014 @default.
- W3045245556 cites W1995137594 @default.
- W3045245556 cites W2009668020 @default.
- W3045245556 cites W2057266281 @default.
- W3045245556 cites W2064447488 @default.
- W3045245556 cites W2086953401 @default.
- W3045245556 cites W2087977130 @default.
- W3045245556 cites W2090923791 @default.
- W3045245556 cites W2096943734 @default.
- W3045245556 cites W2104068492 @default.
- W3045245556 cites W2106409489 @default.
- W3045245556 cites W2115403315 @default.
- W3045245556 cites W2128053425 @default.
- W3045245556 cites W2150846797 @default.
- W3045245556 cites W2159400887 @default.
- W3045245556 cites W2159570078 @default.
- W3045245556 cites W2165698076 @default.
- W3045245556 cites W2194775991 @default.
- W3045245556 cites W2214871046 @default.
- W3045245556 cites W2294202617 @default.
- W3045245556 cites W2330762779 @default.
- W3045245556 cites W2338119550 @default.
- W3045245556 cites W2558385255 @default.
- W3045245556 cites W2593203636 @default.
- W3045245556 cites W2593768305 @default.
- W3045245556 cites W2616287544 @default.
- W3045245556 cites W2739553566 @default.
- W3045245556 cites W2780638627 @default.
- W3045245556 cites W2884771968 @default.
- W3045245556 cites W2963168801 @default.
- W3045245556 cites W2963275094 @default.
- W3045245556 cites W880548201 @default.
- W3045245556 doi "https://doi.org/10.1016/j.knosys.2020.106285" @default.
- W3045245556 hasPublicationYear "2020" @default.
- W3045245556 type Work @default.
- W3045245556 sameAs 3045245556 @default.
- W3045245556 citedByCount "3" @default.
- W3045245556 countsByYear W30452455562021 @default.
- W3045245556 countsByYear W30452455562022 @default.
- W3045245556 crossrefType "journal-article" @default.
- W3045245556 hasAuthorship W3045245556A5007208723 @default.
- W3045245556 hasAuthorship W3045245556A5012772285 @default.
- W3045245556 hasAuthorship W3045245556A5014196059 @default.
- W3045245556 hasAuthorship W3045245556A5049531727 @default.
- W3045245556 hasAuthorship W3045245556A5050996840 @default.
- W3045245556 hasAuthorship W3045245556A5063959214 @default.
- W3045245556 hasAuthorship W3045245556A5070982537 @default.
- W3045245556 hasConcept C119857082 @default.
- W3045245556 hasConcept C120665830 @default.
- W3045245556 hasConcept C121332964 @default.
- W3045245556 hasConcept C127413603 @default.
- W3045245556 hasConcept C134306372 @default.
- W3045245556 hasConcept C139807058 @default.
- W3045245556 hasConcept C153180895 @default.
- W3045245556 hasConcept C154945302 @default.
- W3045245556 hasConcept C170154142 @default.
- W3045245556 hasConcept C18555067 @default.
- W3045245556 hasConcept C2776434776 @default.
- W3045245556 hasConcept C28490314 @default.
- W3045245556 hasConcept C32834561 @default.
- W3045245556 hasConcept C33923547 @default.
- W3045245556 hasConcept C36503486 @default.
- W3045245556 hasConcept C41008148 @default.
- W3045245556 hasConcept C95623464 @default.
- W3045245556 hasConcept C97931131 @default.
- W3045245556 hasConceptScore W3045245556C119857082 @default.
- W3045245556 hasConceptScore W3045245556C120665830 @default.
- W3045245556 hasConceptScore W3045245556C121332964 @default.
- W3045245556 hasConceptScore W3045245556C127413603 @default.
- W3045245556 hasConceptScore W3045245556C134306372 @default.
- W3045245556 hasConceptScore W3045245556C139807058 @default.
- W3045245556 hasConceptScore W3045245556C153180895 @default.
- W3045245556 hasConceptScore W3045245556C154945302 @default.
- W3045245556 hasConceptScore W3045245556C170154142 @default.
- W3045245556 hasConceptScore W3045245556C18555067 @default.
- W3045245556 hasConceptScore W3045245556C2776434776 @default.
- W3045245556 hasConceptScore W3045245556C28490314 @default.
- W3045245556 hasConceptScore W3045245556C32834561 @default.
- W3045245556 hasConceptScore W3045245556C33923547 @default.
- W3045245556 hasConceptScore W3045245556C36503486 @default.
- W3045245556 hasConceptScore W3045245556C41008148 @default.
- W3045245556 hasConceptScore W3045245556C95623464 @default.
- W3045245556 hasConceptScore W3045245556C97931131 @default.
- W3045245556 hasFunder F4320309778 @default.
- W3045245556 hasFunder F4320309893 @default.