Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045359972> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3045359972 endingPage "257" @default.
- W3045359972 startingPage "250" @default.
- W3045359972 abstract "Abstract Purpose The purpose of this study was to predict and classify the gamma passing rate (GPR) value by using new features (3D dosiomics features and combined with plan and dosiomics features) together with a machine learning technique for volumetric modulated arc therapy (VMAT) treatment plans. Methods and materials A total of 888 patients who underwent VMAT were enrolled comprising 1255 treatment plans. Further, 24 plan complexity features and 851 dosiomics features were extracted from the treatment plans. The dataset was randomly split into a training/validation (80%) and test (20%) dataset. The three models for prediction and classification using XGBoost were as follows: (i) plan complexity features-based prediction method (plan model); (ii) 3D dosiomics feature-based prediction model (dosiomics model); (iii) a combination of both the previous models (hybrid model). The prediction performance was evaluated by calculating the mean absolute error (MAE) and the correlation coefficient (CC) between the predicted and measured GPRs. The classification performance was evaluated by calculating the area under curve (AUC) and sensitivity. Results MAE and CC at γ2%/2 mm in the test dataset were 4.6% and 0.58, 4.3% and 0.61, and 4.2% and 0.63 for the plan model, dosiomics model, and hybrid model, respectively. AUC and sensitivity at γ2%/2 mm in test dataset were 0.73 and 0.70, 0.81 and 0.90, and 0.83 and 0.90 for the plan model, dosiomics model, and hybrid model, respectively. Conclusions A combination of both plan and dosiomics features with machine learning technique can improve the prediction and classification performance for GPR." @default.
- W3045359972 created "2020-07-29" @default.
- W3045359972 creator A5015663060 @default.
- W3045359972 creator A5023608537 @default.
- W3045359972 creator A5024421698 @default.
- W3045359972 creator A5064136971 @default.
- W3045359972 creator A5064580921 @default.
- W3045359972 creator A5087874478 @default.
- W3045359972 creator A5091878958 @default.
- W3045359972 date "2020-12-01" @default.
- W3045359972 modified "2023-10-18" @default.
- W3045359972 title "Improvement of prediction and classification performance for gamma passing rate by using plan complexity and dosiomics features" @default.
- W3045359972 cites W1973715126 @default.
- W3045359972 cites W1975813232 @default.
- W3045359972 cites W1999640747 @default.
- W3045359972 cites W2017016280 @default.
- W3045359972 cites W2019425038 @default.
- W3045359972 cites W2081940723 @default.
- W3045359972 cites W2098415888 @default.
- W3045359972 cites W2113184754 @default.
- W3045359972 cites W2115530097 @default.
- W3045359972 cites W2120950852 @default.
- W3045359972 cites W2121960517 @default.
- W3045359972 cites W2129130312 @default.
- W3045359972 cites W2156665896 @default.
- W3045359972 cites W2472443435 @default.
- W3045359972 cites W2586297576 @default.
- W3045359972 cites W2749375587 @default.
- W3045359972 cites W2767128594 @default.
- W3045359972 cites W2791042095 @default.
- W3045359972 cites W2794962342 @default.
- W3045359972 cites W2887229430 @default.
- W3045359972 cites W2891956694 @default.
- W3045359972 cites W2914621354 @default.
- W3045359972 cites W2929904232 @default.
- W3045359972 cites W2946941071 @default.
- W3045359972 cites W2949077056 @default.
- W3045359972 cites W2964998168 @default.
- W3045359972 cites W2966460997 @default.
- W3045359972 cites W2995922582 @default.
- W3045359972 cites W3102476541 @default.
- W3045359972 cites W4234903146 @default.
- W3045359972 doi "https://doi.org/10.1016/j.radonc.2020.07.031" @default.
- W3045359972 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32712247" @default.
- W3045359972 hasPublicationYear "2020" @default.
- W3045359972 type Work @default.
- W3045359972 sameAs 3045359972 @default.
- W3045359972 citedByCount "39" @default.
- W3045359972 countsByYear W30453599722020 @default.
- W3045359972 countsByYear W30453599722021 @default.
- W3045359972 countsByYear W30453599722022 @default.
- W3045359972 countsByYear W30453599722023 @default.
- W3045359972 crossrefType "journal-article" @default.
- W3045359972 hasAuthorship W3045359972A5015663060 @default.
- W3045359972 hasAuthorship W3045359972A5023608537 @default.
- W3045359972 hasAuthorship W3045359972A5024421698 @default.
- W3045359972 hasAuthorship W3045359972A5064136971 @default.
- W3045359972 hasAuthorship W3045359972A5064580921 @default.
- W3045359972 hasAuthorship W3045359972A5087874478 @default.
- W3045359972 hasAuthorship W3045359972A5091878958 @default.
- W3045359972 hasConcept C119857082 @default.
- W3045359972 hasConcept C127313418 @default.
- W3045359972 hasConcept C151730666 @default.
- W3045359972 hasConcept C154945302 @default.
- W3045359972 hasConcept C2776505523 @default.
- W3045359972 hasConcept C41008148 @default.
- W3045359972 hasConceptScore W3045359972C119857082 @default.
- W3045359972 hasConceptScore W3045359972C127313418 @default.
- W3045359972 hasConceptScore W3045359972C151730666 @default.
- W3045359972 hasConceptScore W3045359972C154945302 @default.
- W3045359972 hasConceptScore W3045359972C2776505523 @default.
- W3045359972 hasConceptScore W3045359972C41008148 @default.
- W3045359972 hasFunder F4320320912 @default.
- W3045359972 hasFunder F4320334764 @default.
- W3045359972 hasLocation W30453599721 @default.
- W3045359972 hasOpenAccess W3045359972 @default.
- W3045359972 hasPrimaryLocation W30453599721 @default.
- W3045359972 hasRelatedWork W2961085424 @default.
- W3045359972 hasRelatedWork W3046775127 @default.
- W3045359972 hasRelatedWork W3107602296 @default.
- W3045359972 hasRelatedWork W3170094116 @default.
- W3045359972 hasRelatedWork W3209574120 @default.
- W3045359972 hasRelatedWork W4205958290 @default.
- W3045359972 hasRelatedWork W4286629047 @default.
- W3045359972 hasRelatedWork W4306321456 @default.
- W3045359972 hasRelatedWork W4306674287 @default.
- W3045359972 hasRelatedWork W4224009465 @default.
- W3045359972 hasVolume "153" @default.
- W3045359972 isParatext "false" @default.
- W3045359972 isRetracted "false" @default.
- W3045359972 magId "3045359972" @default.
- W3045359972 workType "article" @default.