Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045431126> ?p ?o ?g. }
- W3045431126 endingPage "1" @default.
- W3045431126 startingPage "1" @default.
- W3045431126 abstract "Organic matter (OM), iron (Fe), and zinc (Zn) in black soil are crucial to ensure high-quality production of agriculture, and hyperspectral technology is an effective approach to achieve a rapid estimation of these soil compositions. Eighty black soil samples were collected in Nehe city, Heilongjiang province, China. With indoor spectral data, the correlation between six spectral reflectance, which includes the original and five other transformed reflectance, and the contents of OM, Fe, and Zn on soil were analyzed. Then with the correlation coefficient significance test (bilateral) calculated at α = 0.01 level to extract sensitive bands, the kernel principal component analysis (KPCA) algorithm was adopted and combined with random forest (RF) and support vector machine (SVM). The combined models were applied for quantitative inversion of soil OM, Fe, and Zn contents and compared them with the models without KPCA dimension reduction. The results show that the determination coefficients and residual prediction deviation for prediction samples of KPCA-RF model (Rp2=0.805 and RPD = 2.329) that adopted to estimate soil OM content are higher than those of RF model (Rp2=0.681 and RPD = 1.820), and the root-mean-square errors for prediction samples of KPCA-RF model (RMSEP = 0.182) are lower than those of RF model (RMSEP = 0.232). Meanwhile, the accuracy of the KPCA-RF model for estimating soil Fe and Zn contents is also higher with Rp2=0.731, 0.710, RMSEP = 0.189, 0.003, and RPD = 1.980, 1.905, respectively. Similarly, the accuracy of the KPCA-SVM model for estimating soil OM, Fe, and Zn contents is higher with Rp2=0.687, 0.609, and 0.585; RMSEP = 0.230, 0.228, and 0.004; and RPD = 1.840, 1.642, and 1.592, separately. Therefore, the machine learning models combined with KPCA are more promising in the quantitative inversion of soil composition contents and can be regarded as an effective approach." @default.
- W3045431126 created "2020-07-29" @default.
- W3045431126 creator A5050043299 @default.
- W3045431126 creator A5068826437 @default.
- W3045431126 creator A5085632247 @default.
- W3045431126 creator A5085811586 @default.
- W3045431126 date "2020-07-21" @default.
- W3045431126 modified "2023-10-16" @default.
- W3045431126 title "Hyperspectral estimation of soil composition contents based on kernel principal component analysis and machine learning model" @default.
- W3045431126 cites W1596717185 @default.
- W3045431126 cites W1965619562 @default.
- W3045431126 cites W1971308172 @default.
- W3045431126 cites W2002058508 @default.
- W3045431126 cites W2005884775 @default.
- W3045431126 cites W2012820803 @default.
- W3045431126 cites W2013290860 @default.
- W3045431126 cites W2016410815 @default.
- W3045431126 cites W2020097894 @default.
- W3045431126 cites W2033275656 @default.
- W3045431126 cites W2034917911 @default.
- W3045431126 cites W2047953209 @default.
- W3045431126 cites W2052903566 @default.
- W3045431126 cites W2058791926 @default.
- W3045431126 cites W2064354376 @default.
- W3045431126 cites W2088032561 @default.
- W3045431126 cites W2093849288 @default.
- W3045431126 cites W2128717878 @default.
- W3045431126 cites W2140095548 @default.
- W3045431126 cites W2140196823 @default.
- W3045431126 cites W2155632266 @default.
- W3045431126 cites W2188115011 @default.
- W3045431126 cites W2515235521 @default.
- W3045431126 cites W2570655840 @default.
- W3045431126 cites W2602628951 @default.
- W3045431126 cites W2611752598 @default.
- W3045431126 cites W2674441608 @default.
- W3045431126 cites W2763148304 @default.
- W3045431126 cites W2780625821 @default.
- W3045431126 cites W2804162939 @default.
- W3045431126 cites W2883827111 @default.
- W3045431126 cites W2884279087 @default.
- W3045431126 cites W2898280516 @default.
- W3045431126 cites W2911964244 @default.
- W3045431126 cites W2924868743 @default.
- W3045431126 cites W2953037715 @default.
- W3045431126 cites W2978789560 @default.
- W3045431126 cites W4239510810 @default.
- W3045431126 doi "https://doi.org/10.1117/1.jrs.14.034507" @default.
- W3045431126 hasPublicationYear "2020" @default.
- W3045431126 type Work @default.
- W3045431126 sameAs 3045431126 @default.
- W3045431126 citedByCount "4" @default.
- W3045431126 countsByYear W30454311262022 @default.
- W3045431126 crossrefType "journal-article" @default.
- W3045431126 hasAuthorship W3045431126A5050043299 @default.
- W3045431126 hasAuthorship W3045431126A5068826437 @default.
- W3045431126 hasAuthorship W3045431126A5085632247 @default.
- W3045431126 hasAuthorship W3045431126A5085811586 @default.
- W3045431126 hasConcept C105795698 @default.
- W3045431126 hasConcept C122280245 @default.
- W3045431126 hasConcept C12267149 @default.
- W3045431126 hasConcept C128990827 @default.
- W3045431126 hasConcept C139945424 @default.
- W3045431126 hasConcept C154945302 @default.
- W3045431126 hasConcept C159078339 @default.
- W3045431126 hasConcept C159390177 @default.
- W3045431126 hasConcept C169258074 @default.
- W3045431126 hasConcept C182335926 @default.
- W3045431126 hasConcept C27438332 @default.
- W3045431126 hasConcept C2780092901 @default.
- W3045431126 hasConcept C33923547 @default.
- W3045431126 hasConcept C39432304 @default.
- W3045431126 hasConcept C41008148 @default.
- W3045431126 hasConcept C70518039 @default.
- W3045431126 hasConceptScore W3045431126C105795698 @default.
- W3045431126 hasConceptScore W3045431126C122280245 @default.
- W3045431126 hasConceptScore W3045431126C12267149 @default.
- W3045431126 hasConceptScore W3045431126C128990827 @default.
- W3045431126 hasConceptScore W3045431126C139945424 @default.
- W3045431126 hasConceptScore W3045431126C154945302 @default.
- W3045431126 hasConceptScore W3045431126C159078339 @default.
- W3045431126 hasConceptScore W3045431126C159390177 @default.
- W3045431126 hasConceptScore W3045431126C169258074 @default.
- W3045431126 hasConceptScore W3045431126C182335926 @default.
- W3045431126 hasConceptScore W3045431126C27438332 @default.
- W3045431126 hasConceptScore W3045431126C2780092901 @default.
- W3045431126 hasConceptScore W3045431126C33923547 @default.
- W3045431126 hasConceptScore W3045431126C39432304 @default.
- W3045431126 hasConceptScore W3045431126C41008148 @default.
- W3045431126 hasConceptScore W3045431126C70518039 @default.
- W3045431126 hasFunder F4320321001 @default.
- W3045431126 hasIssue "03" @default.
- W3045431126 hasLocation W30454311261 @default.
- W3045431126 hasOpenAccess W3045431126 @default.
- W3045431126 hasPrimaryLocation W30454311261 @default.
- W3045431126 hasRelatedWork W1649487960 @default.
- W3045431126 hasRelatedWork W2059112104 @default.
- W3045431126 hasRelatedWork W2108004998 @default.