Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045440599> ?p ?o ?g. }
- W3045440599 endingPage "103694" @default.
- W3045440599 startingPage "103694" @default.
- W3045440599 abstract "The Tiegelongnan porphyry-epithermal Cu (Au) deposit is located in the Duolong porphyry district, north of the Bangong-Nujiang suture zone, Tibet, China. Mineralization is hosted by Jurassic sedimentary sandstone, and several phases of diorite and granodiorite porphyry dikes intruded between 123 and 116 Ma. The hydrothermal alteration is characterized by alunite-kaolinite-dickite overprinting quartz-muscovite-pyrite and biotite alteration zones. Porphyry chalcopyrite-pyrite ± molybdenite (Stage 1) mineralization is associated with biotite alteration. Porphyry chalcopyrite-bornite (Stage 2), and covellite (Stage 3) mineralization is associated with quartz-muscovite-pyrite alteration formed at ~121 Ma. Epithermal mineralization, consisting of pyrite-alunite (Stage 4), chalcopyrite-bornite-digenite (Stage 5), and tennantite-enargite (Stage 6), is hosted by two pulses of alunite-kaolinite breccia and veins at ~116 Ma and ~112 Ma. The fluid composition related to muscovite, with average δ18O of 8.9‰ and δD of −56‰, indicates a magmatic water origin. Fluid δ18O composition in equilibrium with quartz veins decreases from 6.7 to 2.3‰, which are likely the results of the water-rock isotopic exchange. Quartz fluid inclusions δD values between −50 to −84‰ are partly lower than that obtained from muscovite alteration fluids, which may result from H fractionation during fluid inclusions decrepitation. Epithermal stage fluid composition equilibrium with alunite yield δ18O from −1.2 to 2.7‰ and δD from −71 to −51‰, n = 11, which is comparable to the fluid composition equilibrium with Type Ⅰ kaolinite (hosting ores) with δ18O between −2.5 and 2.9‰, and δD between −72 and −51‰. It suggests that alunite and Type Ⅰ kaolinite formed with mixing between magmatic and high altitude Cretaceous meteoric water. Late Types Ⅱ and III kaolinite (filling alunite and quartz veins) fluid δ18O and δD values plot along a mixing line between magmatic and low altitude Cretaceous meteoric water, probably following the erosion and plateau subsidence. Porphyry mineralization sulfide stage 1 chalcopyrite and pyrite yield δ34S values between −5.8 and 0.9‰, with an average fluid δ34SH2S = −2.5‰ (n = 10), whereas stage 2 chalcopyrite returns δ34S values from −8.7 to −3‰ with an average δ34SH2S = −5.6‰ (n = 5). The lower fluid δ34SH2S values during sulfides stage 2 compared to that of stage 1, suggest that the chalcopyrite-bornite mineralization formed under higher oxidation conditions than that of the chalcopyrite-pyrite mineralization. Alunite yields δ34S values from 11 to 18.3‰ (n = 8), and the associated sulfide stage 4 pyrite have varying δ34S values from −32.2 to 5.4‰. Disequilibrium S isotope in alunite-pyrite pairs was likely because of rapid cooling and retrograde S isotope exchange during later sulfides emplacement. Epithermal mineralization sulfide Stage 4 S-equilibrated pyrite (−14.9 to −9.5‰), Stage 5 chalcopyrite (−11.6 to −8.2‰), and Stage 6 enargite (−5.4 to −2.6‰) display increasing δ34S values suggesting epithermal fluid compositions evolve towards more reducing conditions." @default.
- W3045440599 created "2020-07-29" @default.
- W3045440599 creator A5025033630 @default.
- W3045440599 creator A5028628226 @default.
- W3045440599 creator A5034398529 @default.
- W3045440599 creator A5046724082 @default.
- W3045440599 creator A5090976960 @default.
- W3045440599 date "2020-10-01" @default.
- W3045440599 modified "2023-09-25" @default.
- W3045440599 title "Hydrothermal fluid evolution at the Tiegelongnan porphyry-epithermal Cu(Au) deposit, Tibet, China: Constraints from H and O stable isotope and in-situ S isotope" @default.
- W3045440599 cites W1207354341 @default.
- W3045440599 cites W1479697193 @default.
- W3045440599 cites W1915808768 @default.
- W3045440599 cites W1965260190 @default.
- W3045440599 cites W1975861833 @default.
- W3045440599 cites W1979734965 @default.
- W3045440599 cites W1990581568 @default.
- W3045440599 cites W1996361224 @default.
- W3045440599 cites W2001987411 @default.
- W3045440599 cites W2009280724 @default.
- W3045440599 cites W2009958649 @default.
- W3045440599 cites W2012556343 @default.
- W3045440599 cites W2016175712 @default.
- W3045440599 cites W2024536426 @default.
- W3045440599 cites W2036841295 @default.
- W3045440599 cites W2058173185 @default.
- W3045440599 cites W2064563658 @default.
- W3045440599 cites W2067685960 @default.
- W3045440599 cites W2068202901 @default.
- W3045440599 cites W2068656861 @default.
- W3045440599 cites W2072191315 @default.
- W3045440599 cites W2078320350 @default.
- W3045440599 cites W2081605803 @default.
- W3045440599 cites W2093003188 @default.
- W3045440599 cites W2093729673 @default.
- W3045440599 cites W2105382028 @default.
- W3045440599 cites W2105727654 @default.
- W3045440599 cites W2106867767 @default.
- W3045440599 cites W2119378565 @default.
- W3045440599 cites W2127521842 @default.
- W3045440599 cites W2133986980 @default.
- W3045440599 cites W2136887969 @default.
- W3045440599 cites W2141042890 @default.
- W3045440599 cites W2143047176 @default.
- W3045440599 cites W2146054575 @default.
- W3045440599 cites W2149288621 @default.
- W3045440599 cites W2159964821 @default.
- W3045440599 cites W2160102246 @default.
- W3045440599 cites W2169746538 @default.
- W3045440599 cites W2169780180 @default.
- W3045440599 cites W2171050848 @default.
- W3045440599 cites W2387329638 @default.
- W3045440599 cites W2468660937 @default.
- W3045440599 cites W2509716077 @default.
- W3045440599 cites W2562424337 @default.
- W3045440599 cites W2596312190 @default.
- W3045440599 cites W2607793532 @default.
- W3045440599 cites W2625608614 @default.
- W3045440599 cites W2788261897 @default.
- W3045440599 cites W2800339958 @default.
- W3045440599 cites W2889559152 @default.
- W3045440599 cites W2891107590 @default.
- W3045440599 cites W3022084216 @default.
- W3045440599 cites W595159355 @default.
- W3045440599 cites W786077987 @default.
- W3045440599 doi "https://doi.org/10.1016/j.oregeorev.2020.103694" @default.
- W3045440599 hasPublicationYear "2020" @default.
- W3045440599 type Work @default.
- W3045440599 sameAs 3045440599 @default.
- W3045440599 citedByCount "5" @default.
- W3045440599 countsByYear W30454405992021 @default.
- W3045440599 countsByYear W30454405992022 @default.
- W3045440599 countsByYear W30454405992023 @default.
- W3045440599 crossrefType "journal-article" @default.
- W3045440599 hasAuthorship W3045440599A5025033630 @default.
- W3045440599 hasAuthorship W3045440599A5028628226 @default.
- W3045440599 hasAuthorship W3045440599A5034398529 @default.
- W3045440599 hasAuthorship W3045440599A5046724082 @default.
- W3045440599 hasAuthorship W3045440599A5090976960 @default.
- W3045440599 hasConcept C127313418 @default.
- W3045440599 hasConcept C151730666 @default.
- W3045440599 hasConcept C156622251 @default.
- W3045440599 hasConcept C165205528 @default.
- W3045440599 hasConcept C17409809 @default.
- W3045440599 hasConcept C178790620 @default.
- W3045440599 hasConcept C179319051 @default.
- W3045440599 hasConcept C185592680 @default.
- W3045440599 hasConcept C199289684 @default.
- W3045440599 hasConcept C2776062231 @default.
- W3045440599 hasConcept C2776152364 @default.
- W3045440599 hasConcept C2776222295 @default.
- W3045440599 hasConcept C2776581184 @default.
- W3045440599 hasConcept C2776989079 @default.
- W3045440599 hasConcept C2777949781 @default.
- W3045440599 hasConcept C2778188036 @default.
- W3045440599 hasConcept C2778583526 @default.
- W3045440599 hasConcept C2779870107 @default.
- W3045440599 hasConcept C2780416900 @default.