Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045498978> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W3045498978 abstract "Semisimple Lie algebras have been completely classified by Cartan and Killing. The Levi theorem states that every finite dimensional Lie algebra is isomorphic to a semidirect sum of its largest solvable ideal and a semisimple Lie algebra. These focus the classification of solvable Lie algebras as one of the main challenges of Lie algebra research. One approach towards this task is to take a class of nilpotent Lie algebras and construct all extensions of these algebras to solvable ones. In this paper, we propose another approach, i.e., to decompose a solvable nonnilpotent Lie algebra to two nilpotent Lie algebras which are called the left and right nilpotent algebras of the solvable algebra. The right nilpotent algebra is the smallest ideal of the lower central series of the solvable algebra, while the left nilpotent algebra is the factor algebra of the solvable algebra and its right nilpotent algebra. We show that the solvable algebras are decomposable if its left nilpotent algebra is an Abelian algebra of dimension higher than one and its right algebra is an Abelian algebra of dimension one. We further show that all the solvable algebras are isomorphic if their left nilpotent algebras are Heisenberg algebras of fixed dimension and their right algebras are Abelian algebras of dimension one." @default.
- W3045498978 created "2020-08-03" @default.
- W3045498978 creator A5011886900 @default.
- W3045498978 date "2020-01-01" @default.
- W3045498978 modified "2023-10-16" @default.
- W3045498978 title "Nilpotent decomposition of solvable Lie algebras" @default.
- W3045498978 doi "https://doi.org/10.4310/cms.2020.v18.n4.a7" @default.
- W3045498978 hasPublicationYear "2020" @default.
- W3045498978 type Work @default.
- W3045498978 sameAs 3045498978 @default.
- W3045498978 citedByCount "0" @default.
- W3045498978 crossrefType "journal-article" @default.
- W3045498978 hasAuthorship W3045498978A5011886900 @default.
- W3045498978 hasBestOaLocation W30454989782 @default.
- W3045498978 hasConcept C100899422 @default.
- W3045498978 hasConcept C136119220 @default.
- W3045498978 hasConcept C14394260 @default.
- W3045498978 hasConcept C144091092 @default.
- W3045498978 hasConcept C155058155 @default.
- W3045498978 hasConcept C202444582 @default.
- W3045498978 hasConcept C33923547 @default.
- W3045498978 hasConcept C50555996 @default.
- W3045498978 hasConcept C73648015 @default.
- W3045498978 hasConceptScore W3045498978C100899422 @default.
- W3045498978 hasConceptScore W3045498978C136119220 @default.
- W3045498978 hasConceptScore W3045498978C14394260 @default.
- W3045498978 hasConceptScore W3045498978C144091092 @default.
- W3045498978 hasConceptScore W3045498978C155058155 @default.
- W3045498978 hasConceptScore W3045498978C202444582 @default.
- W3045498978 hasConceptScore W3045498978C33923547 @default.
- W3045498978 hasConceptScore W3045498978C50555996 @default.
- W3045498978 hasConceptScore W3045498978C73648015 @default.
- W3045498978 hasLocation W30454989781 @default.
- W3045498978 hasLocation W30454989782 @default.
- W3045498978 hasOpenAccess W3045498978 @default.
- W3045498978 hasPrimaryLocation W30454989781 @default.
- W3045498978 hasRelatedWork W12472125 @default.
- W3045498978 hasRelatedWork W12818609 @default.
- W3045498978 hasRelatedWork W21052514 @default.
- W3045498978 hasRelatedWork W26849773 @default.
- W3045498978 hasRelatedWork W36629450 @default.
- W3045498978 hasRelatedWork W38924870 @default.
- W3045498978 hasRelatedWork W40323928 @default.
- W3045498978 hasRelatedWork W46161725 @default.
- W3045498978 hasRelatedWork W5241013 @default.
- W3045498978 hasRelatedWork W16509042 @default.
- W3045498978 isParatext "false" @default.
- W3045498978 isRetracted "false" @default.
- W3045498978 magId "3045498978" @default.
- W3045498978 workType "article" @default.