Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045563552> ?p ?o ?g. }
- W3045563552 endingPage "141142" @default.
- W3045563552 startingPage "141123" @default.
- W3045563552 abstract "Nowadays, deep learning could be an alternative approach to crack characterization. However, to the best of the authors' knowledge, little research exists on a deep learning-based characterization of fatigue-related AE sources occurring in plate-like structures. Consequently, this paper introduces a stacked denoising autoencoders (SDAE)-based framework to localize acoustic emission (AE) sources in common and complex metallic panels. The experimental specimen are respectively a Q235B steel plate and a 316L stainless steel containing a laser cladding layer. Specifically, SDAE is pre-trained and utilized to localize AE sources that are simulated by using the classical pencil lead break (PLB) approach. Meanwhile, the number of layers and hidden nodes of SDAE used for coordinate-based location is optimized according to a Bayesian Information Criteria (BIC) approach. To validate the proposed network and simplify the analysis, experiments are carried out on the surface of plate-like structures, which only one sensor is applied. After identifying AE sources that occur near laser cladding layers, the proposed approach classifies them into four source-to-laser cladding layer distance categories. Particularly, a ten-fold cross-validation method is utilized to improve the accuracy of localization in this paper. Moreover, the effectiveness analysis to the number of sensors and comparison with conventional machine learning methods, including support vector machine (SVM) and artificial neural network (ANN), are also evaluated. In order to validate the performance of the proposed approach in terms of coordinate-based source localization. Ultimately, the results demonstrate that 100% accuracy for zonal localization, and the root mean squared (RMS) localization errors of two metallic panels are 38 mm (1.5”) and 48 mm (1.9”), respectively. Additionally, in comparison with conventional machine learning approaches (i.e. SVM and ANN) which the RMS errors were 78 mm (2.5”) and 67 mm (2.1”), respectively, the coordinates-based localization accuracy is significantly improved using the proposed approach. The results demonstrate the proposed approach is effective in AE-based structural health monitoring of plate-like structures with single-sensor." @default.
- W3045563552 created "2020-08-03" @default.
- W3045563552 creator A5023085814 @default.
- W3045563552 creator A5085182945 @default.
- W3045563552 date "2020-01-01" @default.
- W3045563552 modified "2023-09-30" @default.
- W3045563552 title "A Novel Acoustic Emission Sources Localization and Identification Method in Metallic Plates Based on Stacked Denoising Autoencoders" @default.
- W3045563552 cites W2071167575 @default.
- W3045563552 cites W2183881993 @default.
- W3045563552 cites W2219903032 @default.
- W3045563552 cites W2291181654 @default.
- W3045563552 cites W2307134038 @default.
- W3045563552 cites W2516736731 @default.
- W3045563552 cites W2529606242 @default.
- W3045563552 cites W2532245834 @default.
- W3045563552 cites W2570659212 @default.
- W3045563552 cites W2581853886 @default.
- W3045563552 cites W2593097720 @default.
- W3045563552 cites W2594591831 @default.
- W3045563552 cites W2602345255 @default.
- W3045563552 cites W2613580180 @default.
- W3045563552 cites W2742678155 @default.
- W3045563552 cites W2751410830 @default.
- W3045563552 cites W2767292437 @default.
- W3045563552 cites W2781562509 @default.
- W3045563552 cites W2789959136 @default.
- W3045563552 cites W2789967011 @default.
- W3045563552 cites W2791494834 @default.
- W3045563552 cites W2791697444 @default.
- W3045563552 cites W2800158564 @default.
- W3045563552 cites W2800173135 @default.
- W3045563552 cites W2802943870 @default.
- W3045563552 cites W2883543868 @default.
- W3045563552 cites W2893408214 @default.
- W3045563552 cites W2906263355 @default.
- W3045563552 cites W2911424810 @default.
- W3045563552 cites W2912435731 @default.
- W3045563552 cites W2913231171 @default.
- W3045563552 cites W2914525790 @default.
- W3045563552 cites W2915351262 @default.
- W3045563552 cites W2919115771 @default.
- W3045563552 cites W2921963090 @default.
- W3045563552 cites W2940563585 @default.
- W3045563552 cites W2941147690 @default.
- W3045563552 cites W2943528069 @default.
- W3045563552 cites W2943765320 @default.
- W3045563552 cites W2944352397 @default.
- W3045563552 cites W2944411166 @default.
- W3045563552 cites W2945697543 @default.
- W3045563552 cites W2948634991 @default.
- W3045563552 cites W2953260284 @default.
- W3045563552 cites W2953498051 @default.
- W3045563552 cites W2954351926 @default.
- W3045563552 cites W2962403043 @default.
- W3045563552 cites W2969647470 @default.
- W3045563552 cites W2970900664 @default.
- W3045563552 cites W2971198714 @default.
- W3045563552 cites W2991106412 @default.
- W3045563552 cites W329631617 @default.
- W3045563552 doi "https://doi.org/10.1109/access.2020.3012521" @default.
- W3045563552 hasPublicationYear "2020" @default.
- W3045563552 type Work @default.
- W3045563552 sameAs 3045563552 @default.
- W3045563552 citedByCount "14" @default.
- W3045563552 countsByYear W30455635522021 @default.
- W3045563552 countsByYear W30455635522022 @default.
- W3045563552 countsByYear W30455635522023 @default.
- W3045563552 crossrefType "journal-article" @default.
- W3045563552 hasAuthorship W3045563552A5023085814 @default.
- W3045563552 hasAuthorship W3045563552A5085182945 @default.
- W3045563552 hasBestOaLocation W30455635521 @default.
- W3045563552 hasConcept C120665830 @default.
- W3045563552 hasConcept C121332964 @default.
- W3045563552 hasConcept C12267149 @default.
- W3045563552 hasConcept C153180895 @default.
- W3045563552 hasConcept C154945302 @default.
- W3045563552 hasConcept C163294075 @default.
- W3045563552 hasConcept C174598085 @default.
- W3045563552 hasConcept C191897082 @default.
- W3045563552 hasConcept C192562407 @default.
- W3045563552 hasConcept C24890656 @default.
- W3045563552 hasConcept C36456112 @default.
- W3045563552 hasConcept C41008148 @default.
- W3045563552 hasConcept C50644808 @default.
- W3045563552 hasConcept C520434653 @default.
- W3045563552 hasConceptScore W3045563552C120665830 @default.
- W3045563552 hasConceptScore W3045563552C121332964 @default.
- W3045563552 hasConceptScore W3045563552C12267149 @default.
- W3045563552 hasConceptScore W3045563552C153180895 @default.
- W3045563552 hasConceptScore W3045563552C154945302 @default.
- W3045563552 hasConceptScore W3045563552C163294075 @default.
- W3045563552 hasConceptScore W3045563552C174598085 @default.
- W3045563552 hasConceptScore W3045563552C191897082 @default.
- W3045563552 hasConceptScore W3045563552C192562407 @default.
- W3045563552 hasConceptScore W3045563552C24890656 @default.
- W3045563552 hasConceptScore W3045563552C36456112 @default.
- W3045563552 hasConceptScore W3045563552C41008148 @default.
- W3045563552 hasConceptScore W3045563552C50644808 @default.