Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045580770> ?p ?o ?g. }
- W3045580770 endingPage "361" @default.
- W3045580770 startingPage "353" @default.
- W3045580770 abstract "The study aims were to develop fracture prediction models by using machine learning approaches and genomic data, as well as to identify the best modeling approach for fracture prediction. The genomic data of Osteoporotic Fractures in Men, cohort Study (n = 5130), were analyzed. After a comprehensive genotype imputation, genetic risk score (GRS) was calculated from 1103 associated Single Nucleotide Polymorphisms for each participant. Data were normalized and split into a training set (80%) and a validation set (20%) for analysis. Random forest, gradient boosting, neural network, and logistic regression were used to develop prediction models for major osteoporotic fractures separately, with GRS, bone density, and other risk factors as predictors. In model training, the synthetic minority oversampling technique was used to account for low fracture rate, and tenfold cross-validation was employed for hyperparameters optimization. In the testing, the area under curve (AUC) and accuracy were used to assess the model performance. The McNemar test was employed to examine the accuracy difference between models. The results showed that the prediction performance of gradient boosting was the best, with AUC of 0.71 and an accuracy of 0.88, and the GRS ranked as the 7th most important variable in the model. The performance of random forest and neural network were also significantly better than that of logistic regression. This study suggested that improving fracture prediction in older men can be achieved by incorporating genetic profiling and by utilizing the gradient boosting approach. This result should not be extrapolated to women or young individuals." @default.
- W3045580770 created "2020-08-03" @default.
- W3045580770 creator A5010890919 @default.
- W3045580770 creator A5017357492 @default.
- W3045580770 creator A5061941057 @default.
- W3045580770 creator A5068914419 @default.
- W3045580770 creator A5080164890 @default.
- W3045580770 date "2020-07-29" @default.
- W3045580770 modified "2023-10-15" @default.
- W3045580770 title "Machine Learning Approaches for Fracture Risk Assessment: A Comparative Analysis of Genomic and Phenotypic Data in 5130 Older Men" @default.
- W3045580770 cites W1895445569 @default.
- W3045580770 cites W1966507238 @default.
- W3045580770 cites W1970525435 @default.
- W3045580770 cites W1977540174 @default.
- W3045580770 cites W1982942836 @default.
- W3045580770 cites W1984093233 @default.
- W3045580770 cites W2010793737 @default.
- W3045580770 cites W2017665006 @default.
- W3045580770 cites W2022126601 @default.
- W3045580770 cites W2031167046 @default.
- W3045580770 cites W2049096000 @default.
- W3045580770 cites W2061672958 @default.
- W3045580770 cites W2065766094 @default.
- W3045580770 cites W2081140214 @default.
- W3045580770 cites W2084817096 @default.
- W3045580770 cites W2087141873 @default.
- W3045580770 cites W2088959173 @default.
- W3045580770 cites W2103614420 @default.
- W3045580770 cites W2110396808 @default.
- W3045580770 cites W2110768118 @default.
- W3045580770 cites W2122906075 @default.
- W3045580770 cites W2123816368 @default.
- W3045580770 cites W2148143831 @default.
- W3045580770 cites W2161555525 @default.
- W3045580770 cites W2472069995 @default.
- W3045580770 cites W2481243666 @default.
- W3045580770 cites W2501160776 @default.
- W3045580770 cites W2522237074 @default.
- W3045580770 cites W2588364916 @default.
- W3045580770 cites W2792399389 @default.
- W3045580770 cites W2793609878 @default.
- W3045580770 cites W2901907525 @default.
- W3045580770 cites W2904039649 @default.
- W3045580770 cites W2909240409 @default.
- W3045580770 cites W2912754435 @default.
- W3045580770 cites W4211121597 @default.
- W3045580770 doi "https://doi.org/10.1007/s00223-020-00734-y" @default.
- W3045580770 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7492432" @default.
- W3045580770 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32728911" @default.
- W3045580770 hasPublicationYear "2020" @default.
- W3045580770 type Work @default.
- W3045580770 sameAs 3045580770 @default.
- W3045580770 citedByCount "14" @default.
- W3045580770 countsByYear W30455807702021 @default.
- W3045580770 countsByYear W30455807702022 @default.
- W3045580770 countsByYear W30455807702023 @default.
- W3045580770 crossrefType "journal-article" @default.
- W3045580770 hasAuthorship W3045580770A5010890919 @default.
- W3045580770 hasAuthorship W3045580770A5017357492 @default.
- W3045580770 hasAuthorship W3045580770A5061941057 @default.
- W3045580770 hasAuthorship W3045580770A5068914419 @default.
- W3045580770 hasAuthorship W3045580770A5080164890 @default.
- W3045580770 hasBestOaLocation W30455807702 @default.
- W3045580770 hasConcept C105795698 @default.
- W3045580770 hasConcept C119857082 @default.
- W3045580770 hasConcept C126322002 @default.
- W3045580770 hasConcept C151956035 @default.
- W3045580770 hasConcept C154945302 @default.
- W3045580770 hasConcept C169258074 @default.
- W3045580770 hasConcept C22019652 @default.
- W3045580770 hasConcept C27181475 @default.
- W3045580770 hasConcept C2776541429 @default.
- W3045580770 hasConcept C2776886416 @default.
- W3045580770 hasConcept C2994343686 @default.
- W3045580770 hasConcept C33923547 @default.
- W3045580770 hasConcept C41008148 @default.
- W3045580770 hasConcept C50644808 @default.
- W3045580770 hasConcept C70153297 @default.
- W3045580770 hasConcept C71924100 @default.
- W3045580770 hasConcept C8642999 @default.
- W3045580770 hasConceptScore W3045580770C105795698 @default.
- W3045580770 hasConceptScore W3045580770C119857082 @default.
- W3045580770 hasConceptScore W3045580770C126322002 @default.
- W3045580770 hasConceptScore W3045580770C151956035 @default.
- W3045580770 hasConceptScore W3045580770C154945302 @default.
- W3045580770 hasConceptScore W3045580770C169258074 @default.
- W3045580770 hasConceptScore W3045580770C22019652 @default.
- W3045580770 hasConceptScore W3045580770C27181475 @default.
- W3045580770 hasConceptScore W3045580770C2776541429 @default.
- W3045580770 hasConceptScore W3045580770C2776886416 @default.
- W3045580770 hasConceptScore W3045580770C2994343686 @default.
- W3045580770 hasConceptScore W3045580770C33923547 @default.
- W3045580770 hasConceptScore W3045580770C41008148 @default.
- W3045580770 hasConceptScore W3045580770C50644808 @default.
- W3045580770 hasConceptScore W3045580770C70153297 @default.
- W3045580770 hasConceptScore W3045580770C71924100 @default.
- W3045580770 hasConceptScore W3045580770C8642999 @default.
- W3045580770 hasFunder F4320337354 @default.