Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045638801> ?p ?o ?g. }
- W3045638801 abstract "Abstract The sensitivity of thin-film materials and devices to defects motivates extensive research into the optimization of film morphology. This research could be accelerated by automated experiments that characterize the response of film morphology to synthesis conditions. Optical imaging can resolve morphological defects in thin films and is readily integrated into automated experiments but the large volumes of images produced by such systems require automated analysis. Existing approaches to automatically analyzing film morphologies in optical images require application-specific customization by software experts and are not robust to changes in image content or imaging conditions. Here, we present a versatile convolutional neural network (CNN) for thin-film image analysis which can identify and quantify the extent of a variety of defects and is applicable to multiple materials and imaging conditions. This CNN is readily adapted to new thin-film image analysis tasks and will facilitate the use of imaging in automated thin-film research systems." @default.
- W3045638801 created "2020-08-03" @default.
- W3045638801 creator A5000988184 @default.
- W3045638801 creator A5019396866 @default.
- W3045638801 creator A5022046448 @default.
- W3045638801 creator A5022577975 @default.
- W3045638801 creator A5028005131 @default.
- W3045638801 creator A5032067538 @default.
- W3045638801 creator A5079478008 @default.
- W3045638801 date "2020-07-29" @default.
- W3045638801 modified "2023-10-15" @default.
- W3045638801 title "Quantifying defects in thin films using machine vision" @default.
- W3045638801 cites W1974226350 @default.
- W3045638801 cites W2001885553 @default.
- W3045638801 cites W2026106632 @default.
- W3045638801 cites W2027746459 @default.
- W3045638801 cites W2037392451 @default.
- W3045638801 cites W2043300831 @default.
- W3045638801 cites W2090150406 @default.
- W3045638801 cites W2091471276 @default.
- W3045638801 cites W2111001399 @default.
- W3045638801 cites W2183182206 @default.
- W3045638801 cites W2194775991 @default.
- W3045638801 cites W2300242332 @default.
- W3045638801 cites W2396321232 @default.
- W3045638801 cites W2407692387 @default.
- W3045638801 cites W2510069246 @default.
- W3045638801 cites W2511065100 @default.
- W3045638801 cites W2657631929 @default.
- W3045638801 cites W2771733300 @default.
- W3045638801 cites W2787089463 @default.
- W3045638801 cites W2796633859 @default.
- W3045638801 cites W2886851716 @default.
- W3045638801 cites W2907651787 @default.
- W3045638801 cites W2926663932 @default.
- W3045638801 cites W2940612399 @default.
- W3045638801 cites W2962731536 @default.
- W3045638801 cites W2962949934 @default.
- W3045638801 cites W2966375007 @default.
- W3045638801 cites W2995033881 @default.
- W3045638801 cites W3004907498 @default.
- W3045638801 cites W3024236153 @default.
- W3045638801 cites W3100990679 @default.
- W3045638801 cites W873254791 @default.
- W3045638801 doi "https://doi.org/10.1038/s41524-020-00380-w" @default.
- W3045638801 hasPublicationYear "2020" @default.
- W3045638801 type Work @default.
- W3045638801 sameAs 3045638801 @default.
- W3045638801 citedByCount "14" @default.
- W3045638801 countsByYear W30456388012021 @default.
- W3045638801 countsByYear W30456388012022 @default.
- W3045638801 countsByYear W30456388012023 @default.
- W3045638801 crossrefType "journal-article" @default.
- W3045638801 hasAuthorship W3045638801A5000988184 @default.
- W3045638801 hasAuthorship W3045638801A5019396866 @default.
- W3045638801 hasAuthorship W3045638801A5022046448 @default.
- W3045638801 hasAuthorship W3045638801A5022577975 @default.
- W3045638801 hasAuthorship W3045638801A5028005131 @default.
- W3045638801 hasAuthorship W3045638801A5032067538 @default.
- W3045638801 hasAuthorship W3045638801A5079478008 @default.
- W3045638801 hasBestOaLocation W30456388011 @default.
- W3045638801 hasConcept C115961682 @default.
- W3045638801 hasConcept C127413603 @default.
- W3045638801 hasConcept C136764020 @default.
- W3045638801 hasConcept C154945302 @default.
- W3045638801 hasConcept C171250308 @default.
- W3045638801 hasConcept C183003079 @default.
- W3045638801 hasConcept C19067145 @default.
- W3045638801 hasConcept C192562407 @default.
- W3045638801 hasConcept C199360897 @default.
- W3045638801 hasConcept C21200559 @default.
- W3045638801 hasConcept C24326235 @default.
- W3045638801 hasConcept C2777904410 @default.
- W3045638801 hasConcept C31972630 @default.
- W3045638801 hasConcept C41008148 @default.
- W3045638801 hasConcept C5339829 @default.
- W3045638801 hasConcept C81363708 @default.
- W3045638801 hasConcept C9417928 @default.
- W3045638801 hasConceptScore W3045638801C115961682 @default.
- W3045638801 hasConceptScore W3045638801C127413603 @default.
- W3045638801 hasConceptScore W3045638801C136764020 @default.
- W3045638801 hasConceptScore W3045638801C154945302 @default.
- W3045638801 hasConceptScore W3045638801C171250308 @default.
- W3045638801 hasConceptScore W3045638801C183003079 @default.
- W3045638801 hasConceptScore W3045638801C19067145 @default.
- W3045638801 hasConceptScore W3045638801C192562407 @default.
- W3045638801 hasConceptScore W3045638801C199360897 @default.
- W3045638801 hasConceptScore W3045638801C21200559 @default.
- W3045638801 hasConceptScore W3045638801C24326235 @default.
- W3045638801 hasConceptScore W3045638801C2777904410 @default.
- W3045638801 hasConceptScore W3045638801C31972630 @default.
- W3045638801 hasConceptScore W3045638801C41008148 @default.
- W3045638801 hasConceptScore W3045638801C5339829 @default.
- W3045638801 hasConceptScore W3045638801C81363708 @default.
- W3045638801 hasConceptScore W3045638801C9417928 @default.
- W3045638801 hasIssue "1" @default.
- W3045638801 hasLocation W30456388011 @default.
- W3045638801 hasLocation W30456388012 @default.
- W3045638801 hasOpenAccess W3045638801 @default.
- W3045638801 hasPrimaryLocation W30456388011 @default.