Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045641519> ?p ?o ?g. }
- W3045641519 endingPage "107135" @default.
- W3045641519 startingPage "107135" @default.
- W3045641519 abstract "Abstract Missing data represents a common problem in environmental and building-related processes, especially in the indoor air quality (IAQ) system of subway stations, where the collected information leads to actions in ventilation management. For these reasons, imputation approaches have been used to avoid information loss due to downsampling or sensor malfunction. This paper introduces an imputation approach for IAQ data via variational autoencoders (VAE) coupled with convolutional layers (VAE-CNN). Two scenarios were introduced: first, the IAQ dataset was corrupted by removing data intervals at different missing rates (i.e., 20%, 50%, and 80%), and second, a point-to-point removal of three sensors was conducted. The performance of the proposed method was compared with different techniques, showing that the VAE-CNN was superior to other methods even for massive amounts of missing data. Finally, the effects of missing and imputed data on the IAQ system in the D-subway station were evaluated in terms of ventilation energy demand, CO2 emissions, and IAQ level. The IAQ management with the imputed data could decrease by approximately 20% of CO2 emissions by reducing the energy demand, while the IAQ level increased by 3% in another scenario." @default.
- W3045641519 created "2020-08-03" @default.
- W3045641519 creator A5031245665 @default.
- W3045641519 creator A5046535259 @default.
- W3045641519 creator A5076131656 @default.
- W3045641519 date "2020-09-01" @default.
- W3045641519 modified "2023-10-12" @default.
- W3045641519 title "Imputing missing indoor air quality data via variational convolutional autoencoders: Implications for ventilation management of subway metro systems" @default.
- W3045641519 cites W1957392452 @default.
- W3045641519 cites W1964391272 @default.
- W3045641519 cites W1967939326 @default.
- W3045641519 cites W1973315244 @default.
- W3045641519 cites W1977098485 @default.
- W3045641519 cites W1977185509 @default.
- W3045641519 cites W2026579521 @default.
- W3045641519 cites W2072333061 @default.
- W3045641519 cites W2078650206 @default.
- W3045641519 cites W2078913624 @default.
- W3045641519 cites W2406910534 @default.
- W3045641519 cites W2480364715 @default.
- W3045641519 cites W2511461628 @default.
- W3045641519 cites W2529827714 @default.
- W3045641519 cites W2598225641 @default.
- W3045641519 cites W2696220207 @default.
- W3045641519 cites W2749041713 @default.
- W3045641519 cites W2760506659 @default.
- W3045641519 cites W2763469494 @default.
- W3045641519 cites W2766888712 @default.
- W3045641519 cites W2774133579 @default.
- W3045641519 cites W2778953522 @default.
- W3045641519 cites W2789954303 @default.
- W3045641519 cites W2792326773 @default.
- W3045641519 cites W2794081072 @default.
- W3045641519 cites W2794778778 @default.
- W3045641519 cites W2883599811 @default.
- W3045641519 cites W2886253200 @default.
- W3045641519 cites W2886782832 @default.
- W3045641519 cites W2897574832 @default.
- W3045641519 cites W2901338302 @default.
- W3045641519 cites W2912345712 @default.
- W3045641519 cites W2915939236 @default.
- W3045641519 cites W2916979377 @default.
- W3045641519 cites W2941426475 @default.
- W3045641519 cites W2945532623 @default.
- W3045641519 cites W2947754577 @default.
- W3045641519 cites W2958786037 @default.
- W3045641519 cites W2963912395 @default.
- W3045641519 cites W2965653205 @default.
- W3045641519 cites W2965835972 @default.
- W3045641519 cites W2973582255 @default.
- W3045641519 cites W2973961985 @default.
- W3045641519 cites W2997527646 @default.
- W3045641519 cites W2997775184 @default.
- W3045641519 cites W2998094656 @default.
- W3045641519 cites W3004513120 @default.
- W3045641519 cites W3009876865 @default.
- W3045641519 cites W351991690 @default.
- W3045641519 cites W609180008 @default.
- W3045641519 doi "https://doi.org/10.1016/j.buildenv.2020.107135" @default.
- W3045641519 hasPublicationYear "2020" @default.
- W3045641519 type Work @default.
- W3045641519 sameAs 3045641519 @default.
- W3045641519 citedByCount "25" @default.
- W3045641519 countsByYear W30456415192020 @default.
- W3045641519 countsByYear W30456415192021 @default.
- W3045641519 countsByYear W30456415192022 @default.
- W3045641519 countsByYear W30456415192023 @default.
- W3045641519 crossrefType "journal-article" @default.
- W3045641519 hasAuthorship W3045641519A5031245665 @default.
- W3045641519 hasAuthorship W3045641519A5046535259 @default.
- W3045641519 hasAuthorship W3045641519A5076131656 @default.
- W3045641519 hasConcept C119857082 @default.
- W3045641519 hasConcept C153294291 @default.
- W3045641519 hasConcept C200457457 @default.
- W3045641519 hasConcept C205649164 @default.
- W3045641519 hasConcept C39432304 @default.
- W3045641519 hasConcept C41008148 @default.
- W3045641519 hasConcept C65469 @default.
- W3045641519 hasConcept C87717796 @default.
- W3045641519 hasConcept C9357733 @default.
- W3045641519 hasConceptScore W3045641519C119857082 @default.
- W3045641519 hasConceptScore W3045641519C153294291 @default.
- W3045641519 hasConceptScore W3045641519C200457457 @default.
- W3045641519 hasConceptScore W3045641519C205649164 @default.
- W3045641519 hasConceptScore W3045641519C39432304 @default.
- W3045641519 hasConceptScore W3045641519C41008148 @default.
- W3045641519 hasConceptScore W3045641519C65469 @default.
- W3045641519 hasConceptScore W3045641519C87717796 @default.
- W3045641519 hasConceptScore W3045641519C9357733 @default.
- W3045641519 hasFunder F4320308268 @default.
- W3045641519 hasFunder F4320314988 @default.
- W3045641519 hasFunder F4320322120 @default.
- W3045641519 hasFunder F4320328359 @default.
- W3045641519 hasLocation W30456415191 @default.
- W3045641519 hasOpenAccess W3045641519 @default.
- W3045641519 hasPrimaryLocation W30456415191 @default.
- W3045641519 hasRelatedWork W1495973377 @default.
- W3045641519 hasRelatedWork W152363767 @default.