Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045702986> ?p ?o ?g. }
- W3045702986 endingPage "148" @default.
- W3045702986 startingPage "117" @default.
- W3045702986 abstract "The meaningful data extraction from the biological big data or omics data is a remaining challenge in bioinformatics. The deep learning methods, which can be used for the prediction of hidden information from the biological data, are widely used in the industry and academia. The authors have discussed the similarity and differences in the widely utilized models in deep learning studies. They first discussed the basic structure of various models followed by their applications in biological perspective. They have also discussed the suggestions and limitations of deep learning. They expect that this chapter can serve as significant perspective for continuous development of its theory, algorithm, and application in the established bioinformatics domain." @default.
- W3045702986 created "2020-08-03" @default.
- W3045702986 creator A5011110357 @default.
- W3045702986 creator A5032617654 @default.
- W3045702986 creator A5065312381 @default.
- W3045702986 date "2021-01-01" @default.
- W3045702986 modified "2023-09-23" @default.
- W3045702986 title "Application of Deep Learning in Biological Big Data Analysis" @default.
- W3045702986 cites W119403003 @default.
- W3045702986 cites W158974721 @default.
- W3045702986 cites W1596947964 @default.
- W3045702986 cites W1819910625 @default.
- W3045702986 cites W1902237438 @default.
- W3045702986 cites W1948745668 @default.
- W3045702986 cites W2004104731 @default.
- W3045702986 cites W2012942264 @default.
- W3045702986 cites W2014963911 @default.
- W3045702986 cites W2023243194 @default.
- W3045702986 cites W2039288348 @default.
- W3045702986 cites W2076063813 @default.
- W3045702986 cites W2081930221 @default.
- W3045702986 cites W2094756095 @default.
- W3045702986 cites W2098740506 @default.
- W3045702986 cites W2136922672 @default.
- W3045702986 cites W2144015117 @default.
- W3045702986 cites W2145283323 @default.
- W3045702986 cites W2248620004 @default.
- W3045702986 cites W2286036512 @default.
- W3045702986 cites W2291961022 @default.
- W3045702986 cites W2404901863 @default.
- W3045702986 cites W2479945688 @default.
- W3045702986 cites W2502949459 @default.
- W3045702986 cites W2518549849 @default.
- W3045702986 cites W2526421605 @default.
- W3045702986 cites W2560209580 @default.
- W3045702986 cites W2560647685 @default.
- W3045702986 cites W2581082771 @default.
- W3045702986 cites W2588030037 @default.
- W3045702986 cites W2605056515 @default.
- W3045702986 cites W2610751394 @default.
- W3045702986 cites W2615066396 @default.
- W3045702986 cites W2618530766 @default.
- W3045702986 cites W2736233804 @default.
- W3045702986 cites W2736859409 @default.
- W3045702986 cites W2739636023 @default.
- W3045702986 cites W2743850381 @default.
- W3045702986 cites W2748902594 @default.
- W3045702986 cites W2762044763 @default.
- W3045702986 cites W2765856398 @default.
- W3045702986 cites W2766352633 @default.
- W3045702986 cites W2772752821 @default.
- W3045702986 cites W2788633781 @default.
- W3045702986 cites W2789367970 @default.
- W3045702986 cites W2790179710 @default.
- W3045702986 cites W2792717684 @default.
- W3045702986 cites W2795735651 @default.
- W3045702986 cites W2797749376 @default.
- W3045702986 cites W2802789529 @default.
- W3045702986 cites W2803729568 @default.
- W3045702986 cites W2804156429 @default.
- W3045702986 cites W2805627121 @default.
- W3045702986 cites W2807607992 @default.
- W3045702986 cites W2810151076 @default.
- W3045702986 cites W2810986024 @default.
- W3045702986 cites W2886725294 @default.
- W3045702986 cites W2905810301 @default.
- W3045702986 cites W2908351833 @default.
- W3045702986 cites W2908663744 @default.
- W3045702986 cites W2912411326 @default.
- W3045702986 cites W2919115771 @default.
- W3045702986 cites W2922701384 @default.
- W3045702986 cites W2945103729 @default.
- W3045702986 cites W2950462296 @default.
- W3045702986 cites W2951965145 @default.
- W3045702986 cites W2952483887 @default.
- W3045702986 cites W2952935243 @default.
- W3045702986 cites W2962969117 @default.
- W3045702986 cites W2963582649 @default.
- W3045702986 cites W2963739921 @default.
- W3045702986 cites W2963744345 @default.
- W3045702986 cites W2963855931 @default.
- W3045702986 cites W2964026052 @default.
- W3045702986 cites W2991575660 @default.
- W3045702986 doi "https://doi.org/10.4018/978-1-7998-3444-1.ch006" @default.
- W3045702986 hasPublicationYear "2021" @default.
- W3045702986 type Work @default.
- W3045702986 sameAs 3045702986 @default.
- W3045702986 citedByCount "1" @default.
- W3045702986 countsByYear W30457029862022 @default.
- W3045702986 crossrefType "book-chapter" @default.
- W3045702986 hasAuthorship W3045702986A5011110357 @default.
- W3045702986 hasAuthorship W3045702986A5032617654 @default.
- W3045702986 hasAuthorship W3045702986A5065312381 @default.
- W3045702986 hasConcept C103278499 @default.
- W3045702986 hasConcept C108583219 @default.
- W3045702986 hasConcept C115961682 @default.
- W3045702986 hasConcept C119857082 @default.
- W3045702986 hasConcept C124101348 @default.