Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045794097> ?p ?o ?g. }
- W3045794097 endingPage "095005" @default.
- W3045794097 startingPage "095005" @default.
- W3045794097 abstract "This study provides a novel approach for an automated system using a machine learning algorithm to predict the predominant site of upper airway collapse into four classes ('lateral wall', 'palate', 'tongue-base' related collapse or 'multi-level' site-of-collapse) in obstructive sleep apnoea (OSA) patients from the audio signal recorded during normal sleep.Snore sounds from 58 patients were recorded simultaneously with full-night polysomnography during sleep with a ceiling mounted microphone. The probable site-of-airway collapse was determined by manual analysis of the shape of the airflow signal during hypopnoea. Time and frequency features of the audio signal were extracted from each hypopnoea event to classify the audio signal into 'lateral wall', 'palate' and 'tongue-base' related collapse according to prior research. The data was divided into two sets. The Learning Set contained the data of the first 45 patients and was used for building the model. The Hidden Set contained the data from the remaining 13 patients and was used for testing the performance of the model. Feature selection was employed to boost the classification performance. The classification was carried out with a multi-class linear discriminant analysis classifier to classify the predominant site-of-collapse for a patient into the four classes. Performance was evaluated by comparing the automatic and manually labelled data based on the predominant site-of-collapse and calculating the accuracy.The model achieved an overall accuracy on the Hidden Set of 77% for discriminating tongue/non-tongue collapse and an accuracy of 62% accuracy for all site-of-collapse classes.Our results demonstrate that the audio signal recorded during sleep can successfully identify the site-of-collapse in the upper airway. The additional information regarding the obstruction site may assist clinicians in deciding the most appropriate treatment for OSA." @default.
- W3045794097 created "2020-08-03" @default.
- W3045794097 creator A5077231143 @default.
- W3045794097 creator A5078054483 @default.
- W3045794097 creator A5079426644 @default.
- W3045794097 creator A5082575965 @default.
- W3045794097 date "2020-09-01" @default.
- W3045794097 modified "2023-10-14" @default.
- W3045794097 title "Automated identification of the predominant site of upper airway collapse in obstructive sleep apnoea patients using snore signal" @default.
- W3045794097 cites W1545241942 @default.
- W3045794097 cites W1964820823 @default.
- W3045794097 cites W1984897371 @default.
- W3045794097 cites W2027573299 @default.
- W3045794097 cites W2054055714 @default.
- W3045794097 cites W2056722705 @default.
- W3045794097 cites W2099218005 @default.
- W3045794097 cites W2103075368 @default.
- W3045794097 cites W2103308415 @default.
- W3045794097 cites W2112998609 @default.
- W3045794097 cites W2120577038 @default.
- W3045794097 cites W2124067200 @default.
- W3045794097 cites W2488248504 @default.
- W3045794097 cites W2538918575 @default.
- W3045794097 cites W2638403458 @default.
- W3045794097 cites W2746502628 @default.
- W3045794097 cites W2754562816 @default.
- W3045794097 cites W2754810003 @default.
- W3045794097 cites W2768426510 @default.
- W3045794097 cites W2964182121 @default.
- W3045794097 cites W2972894951 @default.
- W3045794097 cites W2979875869 @default.
- W3045794097 cites W3005609949 @default.
- W3045794097 cites W4231573007 @default.
- W3045794097 cites W4244915690 @default.
- W3045794097 cites W4256178519 @default.
- W3045794097 cites W90731536 @default.
- W3045794097 doi "https://doi.org/10.1088/1361-6579/abaa33" @default.
- W3045794097 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32721934" @default.
- W3045794097 hasPublicationYear "2020" @default.
- W3045794097 type Work @default.
- W3045794097 sameAs 3045794097 @default.
- W3045794097 citedByCount "7" @default.
- W3045794097 countsByYear W30457940972021 @default.
- W3045794097 countsByYear W30457940972023 @default.
- W3045794097 crossrefType "journal-article" @default.
- W3045794097 hasAuthorship W3045794097A5077231143 @default.
- W3045794097 hasAuthorship W3045794097A5078054483 @default.
- W3045794097 hasAuthorship W3045794097A5079426644 @default.
- W3045794097 hasAuthorship W3045794097A5082575965 @default.
- W3045794097 hasConcept C105922876 @default.
- W3045794097 hasConcept C118552586 @default.
- W3045794097 hasConcept C126838900 @default.
- W3045794097 hasConcept C13895895 @default.
- W3045794097 hasConcept C141071460 @default.
- W3045794097 hasConcept C142724271 @default.
- W3045794097 hasConcept C153180895 @default.
- W3045794097 hasConcept C154945302 @default.
- W3045794097 hasConcept C199360897 @default.
- W3045794097 hasConcept C2777324038 @default.
- W3045794097 hasConcept C2778205975 @default.
- W3045794097 hasConcept C2778263558 @default.
- W3045794097 hasConcept C2779744641 @default.
- W3045794097 hasConcept C2779843651 @default.
- W3045794097 hasConcept C28490314 @default.
- W3045794097 hasConcept C41008148 @default.
- W3045794097 hasConcept C522805319 @default.
- W3045794097 hasConcept C64922751 @default.
- W3045794097 hasConcept C68115822 @default.
- W3045794097 hasConcept C69738355 @default.
- W3045794097 hasConcept C71924100 @default.
- W3045794097 hasConcept C76155785 @default.
- W3045794097 hasConceptScore W3045794097C105922876 @default.
- W3045794097 hasConceptScore W3045794097C118552586 @default.
- W3045794097 hasConceptScore W3045794097C126838900 @default.
- W3045794097 hasConceptScore W3045794097C13895895 @default.
- W3045794097 hasConceptScore W3045794097C141071460 @default.
- W3045794097 hasConceptScore W3045794097C142724271 @default.
- W3045794097 hasConceptScore W3045794097C153180895 @default.
- W3045794097 hasConceptScore W3045794097C154945302 @default.
- W3045794097 hasConceptScore W3045794097C199360897 @default.
- W3045794097 hasConceptScore W3045794097C2777324038 @default.
- W3045794097 hasConceptScore W3045794097C2778205975 @default.
- W3045794097 hasConceptScore W3045794097C2778263558 @default.
- W3045794097 hasConceptScore W3045794097C2779744641 @default.
- W3045794097 hasConceptScore W3045794097C2779843651 @default.
- W3045794097 hasConceptScore W3045794097C28490314 @default.
- W3045794097 hasConceptScore W3045794097C41008148 @default.
- W3045794097 hasConceptScore W3045794097C522805319 @default.
- W3045794097 hasConceptScore W3045794097C64922751 @default.
- W3045794097 hasConceptScore W3045794097C68115822 @default.
- W3045794097 hasConceptScore W3045794097C69738355 @default.
- W3045794097 hasConceptScore W3045794097C71924100 @default.
- W3045794097 hasConceptScore W3045794097C76155785 @default.
- W3045794097 hasFunder F4320320966 @default.
- W3045794097 hasIssue "9" @default.
- W3045794097 hasLocation W30457940971 @default.
- W3045794097 hasLocation W30457940972 @default.
- W3045794097 hasOpenAccess W3045794097 @default.