Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045798462> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3045798462 endingPage "3587" @default.
- W3045798462 startingPage "3577" @default.
- W3045798462 abstract "Edge computing is emerged as a promising solution to cope with huge volumes of data generated by smart devices and low latency demand for mission-critical applications in industrial cyber-physical systems. Data processing and estimation are shifted to the edge computing side. Nevertheless, the WCN between field devices and edge computing side is exposed to malicious attackers because of its openness. Therefore, in this article, we focus on the transmission path selection strategy design to guarantee the secure state estimation on the edge side against dynamic denial-of-service attacks. First, we present a novel learning-based secure routing algorithm (LSRA) to learn the attack rule and predict the attacker's next conduct with the use of both historical and online data. With lower computational complexity, the proposed learning algorithm could track the attack rule in real time whenever new data comes. Meanwhile, we derive the analytical relationship between the probability upper bound of learning error and the learning time. Based on the predicted attacker's behavior obtained by the learning algorithm, we flexibly select the secure routing path to avoid being attacked and, thus, improve successful transmission probability. Furthermore, this secure routing path selection method improves the performance of the state estimation system. The theoretical analysis of estimator stability is given. Finally, simulation results reveal the effectiveness of LSRA and the path selection scheme." @default.
- W3045798462 created "2020-08-03" @default.
- W3045798462 creator A5004668792 @default.
- W3045798462 creator A5007013035 @default.
- W3045798462 creator A5035400870 @default.
- W3045798462 creator A5038267080 @default.
- W3045798462 creator A5044496582 @default.
- W3045798462 date "2021-05-01" @default.
- W3045798462 modified "2023-10-15" @default.
- W3045798462 title "Learning-Based Online Transmission Path Selection for Secure Estimation in Edge Computing Systems" @default.
- W3045798462 cites W2002518043 @default.
- W3045798462 cites W2026131661 @default.
- W3045798462 cites W2040564281 @default.
- W3045798462 cites W2045669182 @default.
- W3045798462 cites W2062132646 @default.
- W3045798462 cites W2069667746 @default.
- W3045798462 cites W2076936031 @default.
- W3045798462 cites W2111072639 @default.
- W3045798462 cites W2313273281 @default.
- W3045798462 cites W2325877089 @default.
- W3045798462 cites W2344737609 @default.
- W3045798462 cites W2401294332 @default.
- W3045798462 cites W2416799949 @default.
- W3045798462 cites W2596636257 @default.
- W3045798462 cites W2606537796 @default.
- W3045798462 cites W2615657320 @default.
- W3045798462 cites W2763925543 @default.
- W3045798462 cites W2765938796 @default.
- W3045798462 cites W2766401293 @default.
- W3045798462 cites W2767092890 @default.
- W3045798462 cites W2767151733 @default.
- W3045798462 cites W2789250945 @default.
- W3045798462 cites W2800726470 @default.
- W3045798462 cites W2811069758 @default.
- W3045798462 cites W2910683613 @default.
- W3045798462 cites W2940860112 @default.
- W3045798462 cites W2950865323 @default.
- W3045798462 cites W2951187092 @default.
- W3045798462 cites W2963006871 @default.
- W3045798462 cites W2964277700 @default.
- W3045798462 cites W2972470616 @default.
- W3045798462 cites W2986074108 @default.
- W3045798462 cites W4229706427 @default.
- W3045798462 doi "https://doi.org/10.1109/tii.2020.3012090" @default.
- W3045798462 hasPublicationYear "2021" @default.
- W3045798462 type Work @default.
- W3045798462 sameAs 3045798462 @default.
- W3045798462 citedByCount "5" @default.
- W3045798462 countsByYear W30457984622021 @default.
- W3045798462 countsByYear W30457984622023 @default.
- W3045798462 crossrefType "journal-article" @default.
- W3045798462 hasAuthorship W3045798462A5004668792 @default.
- W3045798462 hasAuthorship W3045798462A5007013035 @default.
- W3045798462 hasAuthorship W3045798462A5035400870 @default.
- W3045798462 hasAuthorship W3045798462A5038267080 @default.
- W3045798462 hasAuthorship W3045798462A5044496582 @default.
- W3045798462 hasConcept C120314980 @default.
- W3045798462 hasConcept C154945302 @default.
- W3045798462 hasConcept C162307627 @default.
- W3045798462 hasConcept C2777735758 @default.
- W3045798462 hasConcept C31258907 @default.
- W3045798462 hasConcept C41008148 @default.
- W3045798462 hasConcept C74172769 @default.
- W3045798462 hasConceptScore W3045798462C120314980 @default.
- W3045798462 hasConceptScore W3045798462C154945302 @default.
- W3045798462 hasConceptScore W3045798462C162307627 @default.
- W3045798462 hasConceptScore W3045798462C2777735758 @default.
- W3045798462 hasConceptScore W3045798462C31258907 @default.
- W3045798462 hasConceptScore W3045798462C41008148 @default.
- W3045798462 hasConceptScore W3045798462C74172769 @default.
- W3045798462 hasFunder F4320321001 @default.
- W3045798462 hasFunder F4320335796 @default.
- W3045798462 hasIssue "5" @default.
- W3045798462 hasLocation W30457984621 @default.
- W3045798462 hasOpenAccess W3045798462 @default.
- W3045798462 hasPrimaryLocation W30457984621 @default.
- W3045798462 hasRelatedWork W1485627940 @default.
- W3045798462 hasRelatedWork W1596201972 @default.
- W3045798462 hasRelatedWork W1598943142 @default.
- W3045798462 hasRelatedWork W1986253068 @default.
- W3045798462 hasRelatedWork W2130966263 @default.
- W3045798462 hasRelatedWork W2152433827 @default.
- W3045798462 hasRelatedWork W2160425906 @default.
- W3045798462 hasRelatedWork W2348852432 @default.
- W3045798462 hasRelatedWork W2385146268 @default.
- W3045798462 hasRelatedWork W4313054100 @default.
- W3045798462 hasVolume "17" @default.
- W3045798462 isParatext "false" @default.
- W3045798462 isRetracted "false" @default.
- W3045798462 magId "3045798462" @default.
- W3045798462 workType "article" @default.