Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045801920> ?p ?o ?g. }
- W3045801920 endingPage "5210" @default.
- W3045801920 startingPage "5210" @default.
- W3045801920 abstract "Machine learning approaches have been developed rapidly and also they have been involved in many academic findings and discoveries. Additionally, they are widely assessed in numerous industries such as cement companies. Cement companies in developing countries, despite many profits such as valuable mines, face many challenges. Optimization, as a key part of machine learning, has attracted more attention. The main purpose of this paper is to combine a novel Data Envelopment Analysis (DEA) approach in optimization at the first step to find the Decision-Making Unit (DMU) with innovative clustering algorithms in machine learning at the second step introduce the model and algorithm with higher accuracy. At the optimization section with converting two-stage to a simple standard single-stage model, 24 cement companies from five developing countries over 2014–2019 are compared. Window-DEA analysis is used since it leads to increase judgment on the consequences, mainly when applied to small samples followed by allowing year-by-year comparisons of the results. Applying window analysis can be beneficial for managers to expand their comparison and evaluation. To find the most accurate model CCR (Charnes, Cooper and Rhodes model), BBC (Banker, Charnes and Cooper model) and Free Disposal Hull (FDH) DEA model for measuring the efficiency of decision processes are used. FDH model allows the free disposability to construct the production possibility set. At the machine learning section, a novel three-layers data mining filtering pre-processes proposed by expert judgment for clustering algorithms to increase the accuracy and to eliminate unrelated attributes and data. Finally, the most efficient company, best performance model and the most accurate algorithm are introduced. The results indicate that the 22nd company has the highest efficiency score with an efficiency score of 1 for all years. FDH model has the highest efficiency scores during all periods compared with other suggested models. K-means algorithm receives the highest accuracy in all three suggested filtering layers. The BCC and CCR models have the second and third places, respectively. The hierarchical clustering and density-based clustering algorithms have the second and third places, correspondingly." @default.
- W3045801920 created "2020-08-03" @default.
- W3045801920 creator A5006539485 @default.
- W3045801920 creator A5009406015 @default.
- W3045801920 creator A5034612249 @default.
- W3045801920 creator A5068048733 @default.
- W3045801920 creator A5073200033 @default.
- W3045801920 creator A5076623785 @default.
- W3045801920 date "2020-07-28" @default.
- W3045801920 modified "2023-09-29" @default.
- W3045801920 title "A Novel Machine Learning Approach Combined with Optimization Models for Eco-efficiency Evaluation" @default.
- W3045801920 cites W1980511352 @default.
- W3045801920 cites W1983103153 @default.
- W3045801920 cites W1992382000 @default.
- W3045801920 cites W2002437241 @default.
- W3045801920 cites W2010707686 @default.
- W3045801920 cites W2017028212 @default.
- W3045801920 cites W2020448260 @default.
- W3045801920 cites W2029784948 @default.
- W3045801920 cites W2039410887 @default.
- W3045801920 cites W2043816263 @default.
- W3045801920 cites W2057051714 @default.
- W3045801920 cites W2070770179 @default.
- W3045801920 cites W2076452041 @default.
- W3045801920 cites W2084229671 @default.
- W3045801920 cites W2098704515 @default.
- W3045801920 cites W2107885114 @default.
- W3045801920 cites W2224205075 @default.
- W3045801920 cites W2232160004 @default.
- W3045801920 cites W2529170778 @default.
- W3045801920 cites W2537602972 @default.
- W3045801920 cites W2587523506 @default.
- W3045801920 cites W2592688262 @default.
- W3045801920 cites W2594522122 @default.
- W3045801920 cites W2753555091 @default.
- W3045801920 cites W2782033289 @default.
- W3045801920 cites W2799400737 @default.
- W3045801920 cites W2809828967 @default.
- W3045801920 cites W2896067059 @default.
- W3045801920 cites W2909835530 @default.
- W3045801920 cites W2921975164 @default.
- W3045801920 cites W2923233092 @default.
- W3045801920 cites W2942852324 @default.
- W3045801920 cites W2948020268 @default.
- W3045801920 cites W2950363054 @default.
- W3045801920 cites W2953942102 @default.
- W3045801920 cites W2973198867 @default.
- W3045801920 cites W2979048634 @default.
- W3045801920 cites W3015100708 @default.
- W3045801920 cites W3015397302 @default.
- W3045801920 cites W3016754312 @default.
- W3045801920 cites W3027576126 @default.
- W3045801920 cites W3031831663 @default.
- W3045801920 cites W3037735722 @default.
- W3045801920 cites W3042488732 @default.
- W3045801920 cites W3169372665 @default.
- W3045801920 cites W4230773085 @default.
- W3045801920 cites W4293247377 @default.
- W3045801920 cites W610200145 @default.
- W3045801920 cites W785104794 @default.
- W3045801920 doi "https://doi.org/10.3390/app10155210" @default.
- W3045801920 hasPublicationYear "2020" @default.
- W3045801920 type Work @default.
- W3045801920 sameAs 3045801920 @default.
- W3045801920 citedByCount "43" @default.
- W3045801920 countsByYear W30458019202021 @default.
- W3045801920 countsByYear W30458019202022 @default.
- W3045801920 countsByYear W30458019202023 @default.
- W3045801920 crossrefType "journal-article" @default.
- W3045801920 hasAuthorship W3045801920A5006539485 @default.
- W3045801920 hasAuthorship W3045801920A5009406015 @default.
- W3045801920 hasAuthorship W3045801920A5034612249 @default.
- W3045801920 hasAuthorship W3045801920A5068048733 @default.
- W3045801920 hasAuthorship W3045801920A5073200033 @default.
- W3045801920 hasAuthorship W3045801920A5076623785 @default.
- W3045801920 hasBestOaLocation W30458019201 @default.
- W3045801920 hasConcept C119857082 @default.
- W3045801920 hasConcept C124101348 @default.
- W3045801920 hasConcept C126255220 @default.
- W3045801920 hasConcept C127413603 @default.
- W3045801920 hasConcept C13736549 @default.
- W3045801920 hasConcept C154945302 @default.
- W3045801920 hasConcept C199360897 @default.
- W3045801920 hasConcept C22088475 @default.
- W3045801920 hasConcept C2780801425 @default.
- W3045801920 hasConcept C33923547 @default.
- W3045801920 hasConcept C41008148 @default.
- W3045801920 hasConcept C42475967 @default.
- W3045801920 hasConcept C73555534 @default.
- W3045801920 hasConceptScore W3045801920C119857082 @default.
- W3045801920 hasConceptScore W3045801920C124101348 @default.
- W3045801920 hasConceptScore W3045801920C126255220 @default.
- W3045801920 hasConceptScore W3045801920C127413603 @default.
- W3045801920 hasConceptScore W3045801920C13736549 @default.
- W3045801920 hasConceptScore W3045801920C154945302 @default.
- W3045801920 hasConceptScore W3045801920C199360897 @default.
- W3045801920 hasConceptScore W3045801920C22088475 @default.
- W3045801920 hasConceptScore W3045801920C2780801425 @default.