Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045828411> ?p ?o ?g. }
- W3045828411 abstract "Abstract Background BRCA1/2 deleterious variants account for most of the hereditary breast and ovarian cancer cases. Prediction models and guidelines for the assessment of genetic risk rely heavily on criteria with high variability such as family cancer history. Here we investigated the efficacy of MRI (magnetic resonance imaging) texture features as a predictor for BRCA mutation status. Methods A total of 41 female breast cancer individuals at high genetic risk, sixteen with a BRCA1/2 pathogenic variant and twenty five controls were included. From each MRI 4225 computer-extracted voxels were analyzed. Non-imaging features including clinical, family cancer history variables and triple negative receptor status (TNBC) were complementarily used. Lasso-principal component regression (L-PCR) analysis was implemented to compare the predictive performance, assessed as area under the curve (AUC), when imaging features were used, and lasso logistic regression or conventional logistic regression for the remaining analyses. Results Lasso-selected imaging principal components showed the highest predictive value (AUC 0.86), surpassing family cancer history. Clinical variables comprising age at disease onset and bilateral breast cancer yielded a relatively poor AUC (~ 0.56). Combination of imaging with the non-imaging variables led to an improvement of predictive performance in all analyses, with TNBC along with the imaging components yielding the highest AUC (0.94). Replacing family history variables with imaging components yielded an improvement of classification performance of ~ 4%, suggesting that imaging compensates the predictive information arising from family cancer structure. Conclusions The L-PCR model uncovered evidence for the utility of MRI texture features in distinguishing between BRCA1/2 positive and negative high-risk breast cancer individuals, which may suggest value to diagnostic routine. Integration of computer-extracted texture analysis from MRI modalities in prediction models and inclusion criteria might play a role in reducing false positives or missed cases especially when established risk variables such as family history are missing." @default.
- W3045828411 created "2020-08-03" @default.
- W3045828411 creator A5000317643 @default.
- W3045828411 creator A5012714764 @default.
- W3045828411 creator A5017728105 @default.
- W3045828411 creator A5029234391 @default.
- W3045828411 creator A5030214386 @default.
- W3045828411 creator A5030571851 @default.
- W3045828411 creator A5033033652 @default.
- W3045828411 creator A5044421523 @default.
- W3045828411 creator A5067753808 @default.
- W3045828411 creator A5070233823 @default.
- W3045828411 creator A5080566676 @default.
- W3045828411 creator A5082130600 @default.
- W3045828411 creator A5082305673 @default.
- W3045828411 creator A5083855674 @default.
- W3045828411 creator A5085386665 @default.
- W3045828411 creator A5085903263 @default.
- W3045828411 creator A5090614212 @default.
- W3045828411 date "2020-07-29" @default.
- W3045828411 modified "2023-10-07" @default.
- W3045828411 title "Breast MRI texture analysis for prediction of BRCA-associated genetic risk" @default.
- W3045828411 cites W1601967150 @default.
- W3045828411 cites W162535960 @default.
- W3045828411 cites W1831050183 @default.
- W3045828411 cites W1966651331 @default.
- W3045828411 cites W1980483305 @default.
- W3045828411 cites W1996199765 @default.
- W3045828411 cites W1997040096 @default.
- W3045828411 cites W1997424617 @default.
- W3045828411 cites W2004449736 @default.
- W3045828411 cites W2016834007 @default.
- W3045828411 cites W2032535950 @default.
- W3045828411 cites W2038793520 @default.
- W3045828411 cites W2042181420 @default.
- W3045828411 cites W2070331010 @default.
- W3045828411 cites W2086653737 @default.
- W3045828411 cites W2091909122 @default.
- W3045828411 cites W2096027508 @default.
- W3045828411 cites W2097475056 @default.
- W3045828411 cites W2100240570 @default.
- W3045828411 cites W2100989310 @default.
- W3045828411 cites W2103887106 @default.
- W3045828411 cites W2115498751 @default.
- W3045828411 cites W2115727543 @default.
- W3045828411 cites W2121935084 @default.
- W3045828411 cites W2123161028 @default.
- W3045828411 cites W2128739912 @default.
- W3045828411 cites W2129390137 @default.
- W3045828411 cites W2131175634 @default.
- W3045828411 cites W2132037594 @default.
- W3045828411 cites W2132136262 @default.
- W3045828411 cites W2136624736 @default.
- W3045828411 cites W2137603964 @default.
- W3045828411 cites W2141660008 @default.
- W3045828411 cites W2143141516 @default.
- W3045828411 cites W2147047601 @default.
- W3045828411 cites W2147058464 @default.
- W3045828411 cites W2147627866 @default.
- W3045828411 cites W2160818861 @default.
- W3045828411 cites W2161030490 @default.
- W3045828411 cites W2162485927 @default.
- W3045828411 cites W2162956417 @default.
- W3045828411 cites W2171972386 @default.
- W3045828411 cites W2289657957 @default.
- W3045828411 cites W2295468633 @default.
- W3045828411 cites W2313422996 @default.
- W3045828411 cites W2319563274 @default.
- W3045828411 cites W2323655901 @default.
- W3045828411 cites W2323665732 @default.
- W3045828411 cites W2467816395 @default.
- W3045828411 cites W2518728331 @default.
- W3045828411 cites W2527513307 @default.
- W3045828411 cites W2596337217 @default.
- W3045828411 cites W2612119994 @default.
- W3045828411 cites W2627871710 @default.
- W3045828411 cites W2745219335 @default.
- W3045828411 cites W2752263400 @default.
- W3045828411 cites W2780477573 @default.
- W3045828411 cites W2802614434 @default.
- W3045828411 cites W2803428420 @default.
- W3045828411 cites W2894148988 @default.
- W3045828411 cites W2938381018 @default.
- W3045828411 cites W2944384958 @default.
- W3045828411 cites W2944760779 @default.
- W3045828411 cites W2946440976 @default.
- W3045828411 cites W2946550606 @default.
- W3045828411 cites W4294541781 @default.
- W3045828411 cites W82946689 @default.
- W3045828411 doi "https://doi.org/10.1186/s12880-020-00483-2" @default.
- W3045828411 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7388478" @default.
- W3045828411 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32727387" @default.
- W3045828411 hasPublicationYear "2020" @default.
- W3045828411 type Work @default.
- W3045828411 sameAs 3045828411 @default.
- W3045828411 citedByCount "5" @default.
- W3045828411 countsByYear W30458284112022 @default.
- W3045828411 countsByYear W30458284112023 @default.
- W3045828411 crossrefType "journal-article" @default.
- W3045828411 hasAuthorship W3045828411A5000317643 @default.