Matches in SemOpenAlex for { <https://semopenalex.org/work/W3045851468> ?p ?o ?g. }
- W3045851468 abstract "The accurate classification of mass lesions in the adrenal glands (adrenal masses), detected with computed tomography (CT), is important for diagnosis and patient management. Adrenal masses can be benign or malignant and benign masses have varying prevalence. Classification methods based on convolutional neural networks (CNNs) are the state-of-the-art in maximizing inter-class differences in large medical imaging training datasets. The application of CNNs, to adrenal masses is challenging due to large intra-class variations, large inter-class similarities and imbalanced training data due to the size of the mass lesions. We developed a deep multi-scale resemblance network (DMRN) to overcome these limitations and leveraged paired CNNs to evaluate the intra-class similarities. We used multi-scale feature embedding to improve the inter-class separability by iteratively combining complementary information produced at different scales of the input to create structured feature descriptors. We augmented the training data with randomly sampled paired adrenal masses to reduce the influence of imbalanced training data. We used 229 CT scans of patients with adrenal masses for evaluation. In a five-fold cross-validation, our method had the best results (89.52% in accuracy) when compared to the state-of-the-art methods (p<0.05). We conducted a generalizability analysis of our method on the ImageCLEF 2016 competition dataset for medical subfigure classification, which consists of a training set of 6,776 images and a test set of 4,166 images across 30 classes. Our method achieved better classification performance (85.90% in accuracy) when compared to the existing methods and was competitive when compared with methods that require additional training data (1.47% lower in accuracy). Our DMRN sub-classified adrenal masses on CT and was superior to state-of-the-art approaches." @default.
- W3045851468 created "2020-08-03" @default.
- W3045851468 creator A5007640483 @default.
- W3045851468 creator A5015039086 @default.
- W3045851468 creator A5068891693 @default.
- W3045851468 creator A5069611208 @default.
- W3045851468 creator A5082979981 @default.
- W3045851468 creator A5091321504 @default.
- W3045851468 date "2020-07-29" @default.
- W3045851468 modified "2023-10-16" @default.
- W3045851468 title "Deep Multi-Scale Resemblance Network for the Sub-class Differentiation of Adrenal Masses on Computed Tomography Images" @default.
- W3045851468 cites W1975020933 @default.
- W3045851468 cites W2014418634 @default.
- W3045851468 cites W2044769820 @default.
- W3045851468 cites W2066720700 @default.
- W3045851468 cites W2073541423 @default.
- W3045851468 cites W2078014989 @default.
- W3045851468 cites W2079707637 @default.
- W3045851468 cites W2091967951 @default.
- W3045851468 cites W2110261828 @default.
- W3045851468 cites W2110290656 @default.
- W3045851468 cites W2112063803 @default.
- W3045851468 cites W2132744910 @default.
- W3045851468 cites W2138621090 @default.
- W3045851468 cites W2141619730 @default.
- W3045851468 cites W2148626383 @default.
- W3045851468 cites W2152542893 @default.
- W3045851468 cites W2153364064 @default.
- W3045851468 cites W2153635508 @default.
- W3045851468 cites W2155662634 @default.
- W3045851468 cites W2163922914 @default.
- W3045851468 cites W2168231600 @default.
- W3045851468 cites W2187089797 @default.
- W3045851468 cites W2194775991 @default.
- W3045851468 cites W2237167366 @default.
- W3045851468 cites W2253429366 @default.
- W3045851468 cites W2323929895 @default.
- W3045851468 cites W2343172899 @default.
- W3045851468 cites W2430685368 @default.
- W3045851468 cites W24556036 @default.
- W3045851468 cites W2553191729 @default.
- W3045851468 cites W2558580397 @default.
- W3045851468 cites W2559785631 @default.
- W3045851468 cites W2598853550 @default.
- W3045851468 cites W2613049942 @default.
- W3045851468 cites W2883190781 @default.
- W3045851468 cites W2888442043 @default.
- W3045851468 cites W2914959431 @default.
- W3045851468 cites W2916845318 @default.
- W3045851468 cites W2962835968 @default.
- W3045851468 doi "https://doi.org/10.48550/arxiv.2007.14625" @default.
- W3045851468 hasPublicationYear "2020" @default.
- W3045851468 type Work @default.
- W3045851468 sameAs 3045851468 @default.
- W3045851468 citedByCount "0" @default.
- W3045851468 crossrefType "posted-content" @default.
- W3045851468 hasAuthorship W3045851468A5007640483 @default.
- W3045851468 hasAuthorship W3045851468A5015039086 @default.
- W3045851468 hasAuthorship W3045851468A5068891693 @default.
- W3045851468 hasAuthorship W3045851468A5069611208 @default.
- W3045851468 hasAuthorship W3045851468A5082979981 @default.
- W3045851468 hasAuthorship W3045851468A5091321504 @default.
- W3045851468 hasBestOaLocation W30458514681 @default.
- W3045851468 hasConcept C105795698 @default.
- W3045851468 hasConcept C119857082 @default.
- W3045851468 hasConcept C126838900 @default.
- W3045851468 hasConcept C138885662 @default.
- W3045851468 hasConcept C153180895 @default.
- W3045851468 hasConcept C154945302 @default.
- W3045851468 hasConcept C177264268 @default.
- W3045851468 hasConcept C199360897 @default.
- W3045851468 hasConcept C205649164 @default.
- W3045851468 hasConcept C27158222 @default.
- W3045851468 hasConcept C2776401178 @default.
- W3045851468 hasConcept C2777212361 @default.
- W3045851468 hasConcept C2778755073 @default.
- W3045851468 hasConcept C33923547 @default.
- W3045851468 hasConcept C41008148 @default.
- W3045851468 hasConcept C41895202 @default.
- W3045851468 hasConcept C50644808 @default.
- W3045851468 hasConcept C544519230 @default.
- W3045851468 hasConcept C58489278 @default.
- W3045851468 hasConcept C58640448 @default.
- W3045851468 hasConcept C71924100 @default.
- W3045851468 hasConcept C81363708 @default.
- W3045851468 hasConceptScore W3045851468C105795698 @default.
- W3045851468 hasConceptScore W3045851468C119857082 @default.
- W3045851468 hasConceptScore W3045851468C126838900 @default.
- W3045851468 hasConceptScore W3045851468C138885662 @default.
- W3045851468 hasConceptScore W3045851468C153180895 @default.
- W3045851468 hasConceptScore W3045851468C154945302 @default.
- W3045851468 hasConceptScore W3045851468C177264268 @default.
- W3045851468 hasConceptScore W3045851468C199360897 @default.
- W3045851468 hasConceptScore W3045851468C205649164 @default.
- W3045851468 hasConceptScore W3045851468C27158222 @default.
- W3045851468 hasConceptScore W3045851468C2776401178 @default.
- W3045851468 hasConceptScore W3045851468C2777212361 @default.
- W3045851468 hasConceptScore W3045851468C2778755073 @default.
- W3045851468 hasConceptScore W3045851468C33923547 @default.
- W3045851468 hasConceptScore W3045851468C41008148 @default.