Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046022049> ?p ?o ?g. }
- W3046022049 abstract "In wireless sensor networks (WSNs), distributed sensors are often constrained by their limited battery energy and radio spectrum for transmission. This paper investigates an on-line parameter estimation problem of linear regression in a WSN, where each sensor is restricted to send a one-bit message $+1/-1$ to a fusion center in order to satisfy the spectrum and power constraints. Moreover, sensor nodes communicate with the fusion center over noisy links, which can randomly flip the binary message sent from each sensor to the fusion center. With the flipped bit stream, robust and sparse-robust learning algorithms respectively are proposed. In the proposed algorithms, the parameter estimation over a WSN with the imperfect binary communication is formulated hierarchically as Bayesian learning, and is equivalent to an expectation maximization realized by using the recursive least-squares methods. Theoretical and empirical research is carried out to assess the performance of the proposed algorithms, and a practical application of the proposed algorithms in estimation and tracking of frequencies of multiple sinusoids is also presented. These theoretical analysis and experimental results demonstrate the effectiveness of the proposed algorithms." @default.
- W3046022049 created "2020-08-03" @default.
- W3046022049 creator A5005025692 @default.
- W3046022049 creator A5027039492 @default.
- W3046022049 creator A5061723765 @default.
- W3046022049 creator A5066585954 @default.
- W3046022049 creator A5076800191 @default.
- W3046022049 date "2020-01-01" @default.
- W3046022049 modified "2023-10-17" @default.
- W3046022049 title "Sparse Robust Learning From Flipped Bits" @default.
- W3046022049 cites W1494853941 @default.
- W3046022049 cites W1539719269 @default.
- W3046022049 cites W1605194072 @default.
- W3046022049 cites W1790915160 @default.
- W3046022049 cites W1990158361 @default.
- W3046022049 cites W1993838378 @default.
- W3046022049 cites W2042216486 @default.
- W3046022049 cites W2047565655 @default.
- W3046022049 cites W2060430274 @default.
- W3046022049 cites W2081540728 @default.
- W3046022049 cites W2097380742 @default.
- W3046022049 cites W2101847234 @default.
- W3046022049 cites W2102538920 @default.
- W3046022049 cites W2110505738 @default.
- W3046022049 cites W2113085878 @default.
- W3046022049 cites W2119133138 @default.
- W3046022049 cites W2127617367 @default.
- W3046022049 cites W2130403046 @default.
- W3046022049 cites W2131091570 @default.
- W3046022049 cites W2135806093 @default.
- W3046022049 cites W2148319469 @default.
- W3046022049 cites W2150991625 @default.
- W3046022049 cites W2154546286 @default.
- W3046022049 cites W2246096453 @default.
- W3046022049 cites W2315887526 @default.
- W3046022049 cites W2526144952 @default.
- W3046022049 cites W2777627674 @default.
- W3046022049 cites W2792381516 @default.
- W3046022049 cites W2800452763 @default.
- W3046022049 cites W2809750269 @default.
- W3046022049 cites W2886755267 @default.
- W3046022049 cites W2890964800 @default.
- W3046022049 cites W2963879045 @default.
- W3046022049 cites W2964200481 @default.
- W3046022049 cites W2964322027 @default.
- W3046022049 cites W3147084560 @default.
- W3046022049 doi "https://doi.org/10.1109/tsp.2020.3012284" @default.
- W3046022049 hasPublicationYear "2020" @default.
- W3046022049 type Work @default.
- W3046022049 sameAs 3046022049 @default.
- W3046022049 citedByCount "0" @default.
- W3046022049 crossrefType "journal-article" @default.
- W3046022049 hasAuthorship W3046022049A5005025692 @default.
- W3046022049 hasAuthorship W3046022049A5027039492 @default.
- W3046022049 hasAuthorship W3046022049A5061723765 @default.
- W3046022049 hasAuthorship W3046022049A5066585954 @default.
- W3046022049 hasAuthorship W3046022049A5076800191 @default.
- W3046022049 hasConcept C11413529 @default.
- W3046022049 hasConcept C149946192 @default.
- W3046022049 hasConcept C154945302 @default.
- W3046022049 hasConcept C24590314 @default.
- W3046022049 hasConcept C2781234732 @default.
- W3046022049 hasConcept C31258907 @default.
- W3046022049 hasConcept C33923547 @default.
- W3046022049 hasConcept C33954974 @default.
- W3046022049 hasConcept C41008148 @default.
- W3046022049 hasConcept C48372109 @default.
- W3046022049 hasConcept C555944384 @default.
- W3046022049 hasConcept C761482 @default.
- W3046022049 hasConcept C76155785 @default.
- W3046022049 hasConcept C94375191 @default.
- W3046022049 hasConceptScore W3046022049C11413529 @default.
- W3046022049 hasConceptScore W3046022049C149946192 @default.
- W3046022049 hasConceptScore W3046022049C154945302 @default.
- W3046022049 hasConceptScore W3046022049C24590314 @default.
- W3046022049 hasConceptScore W3046022049C2781234732 @default.
- W3046022049 hasConceptScore W3046022049C31258907 @default.
- W3046022049 hasConceptScore W3046022049C33923547 @default.
- W3046022049 hasConceptScore W3046022049C33954974 @default.
- W3046022049 hasConceptScore W3046022049C41008148 @default.
- W3046022049 hasConceptScore W3046022049C48372109 @default.
- W3046022049 hasConceptScore W3046022049C555944384 @default.
- W3046022049 hasConceptScore W3046022049C761482 @default.
- W3046022049 hasConceptScore W3046022049C76155785 @default.
- W3046022049 hasConceptScore W3046022049C94375191 @default.
- W3046022049 hasFunder F4320321001 @default.
- W3046022049 hasFunder F4320338464 @default.
- W3046022049 hasLocation W30460220491 @default.
- W3046022049 hasOpenAccess W3046022049 @default.
- W3046022049 hasPrimaryLocation W30460220491 @default.
- W3046022049 hasRelatedWork W10119305 @default.
- W3046022049 hasRelatedWork W12516433 @default.
- W3046022049 hasRelatedWork W12823191 @default.
- W3046022049 hasRelatedWork W13697872 @default.
- W3046022049 hasRelatedWork W14963763 @default.
- W3046022049 hasRelatedWork W3049209 @default.
- W3046022049 hasRelatedWork W416718 @default.
- W3046022049 hasRelatedWork W5076245 @default.
- W3046022049 hasRelatedWork W5749136 @default.
- W3046022049 hasRelatedWork W6092101 @default.