Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046079892> ?p ?o ?g. }
- W3046079892 abstract "Discrete dynamical modeling shows promise in prioritizing drug combinations for screening efforts by reducing the experimental workload inherent to the vast numbers of possible drug combinations. We have investigated approaches to predict combination responses across different cancer cell lines using logic models generated from one generic prior-knowledge network representing 144 nodes covering major cancer signaling pathways. Cell-line specific models were configured to agree with baseline activity data from each unperturbed cell line. Testing against experimental data demonstrated a high number of true positive and true negative predictions, including also cell-specific responses. We demonstrate the possible enhancement of predictive capability of models by curation of literature knowledge further detailing subtle biologically founded signaling mechanisms in the model topology. In silico model analysis pinpointed a subset of network nodes highly influencing model predictions. Our results indicate that the performance of logic models can be improved by focusing on high-influence node protein activity data for model configuration and that these nodes accommodate high information flow in the regulatory network." @default.
- W3046079892 created "2020-08-03" @default.
- W3046079892 creator A5008971014 @default.
- W3046079892 creator A5011858469 @default.
- W3046079892 creator A5015950608 @default.
- W3046079892 creator A5019876939 @default.
- W3046079892 creator A5077915624 @default.
- W3046079892 creator A5084054353 @default.
- W3046079892 creator A5087163244 @default.
- W3046079892 date "2020-07-28" @default.
- W3046079892 modified "2023-09-28" @default.
- W3046079892 title "Strategies to Enhance Logic Modeling-Based Cell Line-Specific Drug Synergy Prediction" @default.
- W3046079892 cites W1270845237 @default.
- W3046079892 cites W1820314031 @default.
- W3046079892 cites W1894267660 @default.
- W3046079892 cites W1915767302 @default.
- W3046079892 cites W1965370740 @default.
- W3046079892 cites W1986730787 @default.
- W3046079892 cites W1989277387 @default.
- W3046079892 cites W1995996719 @default.
- W3046079892 cites W2002228383 @default.
- W3046079892 cites W2008088303 @default.
- W3046079892 cites W2017433159 @default.
- W3046079892 cites W2035036685 @default.
- W3046079892 cites W2042625441 @default.
- W3046079892 cites W2043398720 @default.
- W3046079892 cites W2054457395 @default.
- W3046079892 cites W2054578566 @default.
- W3046079892 cites W2061061337 @default.
- W3046079892 cites W2095649738 @default.
- W3046079892 cites W2100714130 @default.
- W3046079892 cites W2108933868 @default.
- W3046079892 cites W2112868720 @default.
- W3046079892 cites W2121545342 @default.
- W3046079892 cites W2129662907 @default.
- W3046079892 cites W2133465414 @default.
- W3046079892 cites W2136760727 @default.
- W3046079892 cites W2158217645 @default.
- W3046079892 cites W2159482845 @default.
- W3046079892 cites W2159675211 @default.
- W3046079892 cites W2159990074 @default.
- W3046079892 cites W2161636210 @default.
- W3046079892 cites W2170723553 @default.
- W3046079892 cites W2254594392 @default.
- W3046079892 cites W2290950904 @default.
- W3046079892 cites W2461427403 @default.
- W3046079892 cites W2519842263 @default.
- W3046079892 cites W2557154264 @default.
- W3046079892 cites W2566426512 @default.
- W3046079892 cites W2586159641 @default.
- W3046079892 cites W2604527271 @default.
- W3046079892 cites W2604956011 @default.
- W3046079892 cites W2606803593 @default.
- W3046079892 cites W2621589069 @default.
- W3046079892 cites W2753385986 @default.
- W3046079892 cites W2771169143 @default.
- W3046079892 cites W2784943238 @default.
- W3046079892 cites W2786241182 @default.
- W3046079892 cites W2887364046 @default.
- W3046079892 cites W2889062579 @default.
- W3046079892 cites W2894573839 @default.
- W3046079892 cites W2900476516 @default.
- W3046079892 cites W2912260118 @default.
- W3046079892 cites W2950427358 @default.
- W3046079892 cites W2951449549 @default.
- W3046079892 cites W2963874232 @default.
- W3046079892 cites W2972783946 @default.
- W3046079892 cites W2982368177 @default.
- W3046079892 cites W2982537632 @default.
- W3046079892 cites W3007934576 @default.
- W3046079892 cites W3105153399 @default.
- W3046079892 cites W4233698560 @default.
- W3046079892 cites W4294216483 @default.
- W3046079892 cites W2465989476 @default.
- W3046079892 doi "https://doi.org/10.3389/fphys.2020.00862" @default.
- W3046079892 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7399174" @default.
- W3046079892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32848834" @default.
- W3046079892 hasPublicationYear "2020" @default.
- W3046079892 type Work @default.
- W3046079892 sameAs 3046079892 @default.
- W3046079892 citedByCount "6" @default.
- W3046079892 countsByYear W30460798922020 @default.
- W3046079892 countsByYear W30460798922021 @default.
- W3046079892 countsByYear W30460798922022 @default.
- W3046079892 countsByYear W30460798922023 @default.
- W3046079892 crossrefType "journal-article" @default.
- W3046079892 hasAuthorship W3046079892A5008971014 @default.
- W3046079892 hasAuthorship W3046079892A5011858469 @default.
- W3046079892 hasAuthorship W3046079892A5015950608 @default.
- W3046079892 hasAuthorship W3046079892A5019876939 @default.
- W3046079892 hasAuthorship W3046079892A5077915624 @default.
- W3046079892 hasAuthorship W3046079892A5084054353 @default.
- W3046079892 hasAuthorship W3046079892A5087163244 @default.
- W3046079892 hasBestOaLocation W30460798921 @default.
- W3046079892 hasConcept C104122410 @default.
- W3046079892 hasConcept C104317684 @default.
- W3046079892 hasConcept C119857082 @default.
- W3046079892 hasConcept C124101348 @default.
- W3046079892 hasConcept C127413603 @default.
- W3046079892 hasConcept C144024400 @default.