Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046117575> ?p ?o ?g. }
- W3046117575 endingPage "5171" @default.
- W3046117575 startingPage "5158" @default.
- W3046117575 abstract "Purpose Despite the proven utility of multiparametric magnetic resonance imaging (MRI) in radiation therapy, MRI‐guided radiation treatment planning is limited by the fact that MRI does not directly provide the electron density map required for absorbed dose calculation. In this work, a new deep convolutional neural network model with efficient learning capability, suitable for applications where the number of training subjects is limited, is proposed to generate accurate synthetic computed tomography (sCT) images from MRI. Methods This efficient convolutional neural network (eCNN) is built upon a combination of the SegNet architecture (a 13‐layer encoder‐decoder structure similar to the U‐Net network) without softmax layers and the residual network. Moreover, maxpooling indices and high resolution features from the encoding network were incorporated into the corresponding decoding layers. A dataset containing 15 co‐registered MRI‐CT pairs of male pelvis (1861 two‐dimensional images) were used for training and evaluation of MRI to CT synthesis process using a fivefold cross‐validation scheme. The performance of the eCNN model was compared to an atlas‐based sCT generation technique as well as the original U‐Net model considering CT images as reference. The mean error (ME), mean absolute error (MAE), Pearson correlation coefficient (PCC), structural similarity index (SSIM), and peak signal‐to‐noise ratio (PSNR) metrics were calculated between sCT and ground truth CT images. Results The eCNN model exhibited effective learning capability using only 12 training subjects. The model achieved a ME and MAE of 2.8 ± 10.3 and 30.0 ± 10.4 HU, respectively, which is substantially lower than values achieved by the atlas‐based (−0.8 ± 35.4 and 64.6 ± 21.2) and U‐Net (7.4 ± 11.9 and 44.0 ± 8.8) methods, respectively. Conclusion The proposed eCNN model exhibited efficient convergence rate with a low number of training subjects, while providing accurate synthetic CT images. The eCNN model outperformed the original U‐Net model and showed superior performance to the atlas‐based technique." @default.
- W3046117575 created "2020-08-03" @default.
- W3046117575 creator A5007891293 @default.
- W3046117575 creator A5020124113 @default.
- W3046117575 creator A5034361552 @default.
- W3046117575 creator A5039181443 @default.
- W3046117575 creator A5060762919 @default.
- W3046117575 date "2020-09-06" @default.
- W3046117575 modified "2023-10-14" @default.
- W3046117575 title "A new deep convolutional neural network design with efficient learning capability: Application to CT image synthesis from MRI" @default.
- W3046117575 cites W1558579465 @default.
- W3046117575 cites W1901129140 @default.
- W3046117575 cites W1934517153 @default.
- W3046117575 cites W1984473052 @default.
- W3046117575 cites W2015134308 @default.
- W3046117575 cites W2035397698 @default.
- W3046117575 cites W2097117768 @default.
- W3046117575 cites W2110966329 @default.
- W3046117575 cites W2133287637 @default.
- W3046117575 cites W2142082007 @default.
- W3046117575 cites W2152242891 @default.
- W3046117575 cites W2165459480 @default.
- W3046117575 cites W2167157872 @default.
- W3046117575 cites W2194775991 @default.
- W3046117575 cites W2267700533 @default.
- W3046117575 cites W2276599903 @default.
- W3046117575 cites W2342543141 @default.
- W3046117575 cites W2418786089 @default.
- W3046117575 cites W2467603620 @default.
- W3046117575 cites W2513595145 @default.
- W3046117575 cites W2556131806 @default.
- W3046117575 cites W2580163862 @default.
- W3046117575 cites W2592929672 @default.
- W3046117575 cites W2665599524 @default.
- W3046117575 cites W2765429622 @default.
- W3046117575 cites W2771678676 @default.
- W3046117575 cites W2778924750 @default.
- W3046117575 cites W2789713147 @default.
- W3046117575 cites W2798371872 @default.
- W3046117575 cites W2808312419 @default.
- W3046117575 cites W2809834193 @default.
- W3046117575 cites W2890645020 @default.
- W3046117575 cites W2897418220 @default.
- W3046117575 cites W2898871261 @default.
- W3046117575 cites W2955015477 @default.
- W3046117575 cites W2963176524 @default.
- W3046117575 cites W2963470893 @default.
- W3046117575 cites W2963578539 @default.
- W3046117575 cites W2963881378 @default.
- W3046117575 cites W2971604258 @default.
- W3046117575 cites W3015206788 @default.
- W3046117575 cites W3099224939 @default.
- W3046117575 cites W3101123465 @default.
- W3046117575 doi "https://doi.org/10.1002/mp.14418" @default.
- W3046117575 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32730661" @default.
- W3046117575 hasPublicationYear "2020" @default.
- W3046117575 type Work @default.
- W3046117575 sameAs 3046117575 @default.
- W3046117575 citedByCount "60" @default.
- W3046117575 countsByYear W30461175752020 @default.
- W3046117575 countsByYear W30461175752021 @default.
- W3046117575 countsByYear W30461175752022 @default.
- W3046117575 countsByYear W30461175752023 @default.
- W3046117575 crossrefType "journal-article" @default.
- W3046117575 hasAuthorship W3046117575A5007891293 @default.
- W3046117575 hasAuthorship W3046117575A5020124113 @default.
- W3046117575 hasAuthorship W3046117575A5034361552 @default.
- W3046117575 hasAuthorship W3046117575A5039181443 @default.
- W3046117575 hasAuthorship W3046117575A5060762919 @default.
- W3046117575 hasBestOaLocation W30461175752 @default.
- W3046117575 hasConcept C105795698 @default.
- W3046117575 hasConcept C108583219 @default.
- W3046117575 hasConcept C111919701 @default.
- W3046117575 hasConcept C118505674 @default.
- W3046117575 hasConcept C126838900 @default.
- W3046117575 hasConcept C139945424 @default.
- W3046117575 hasConcept C143409427 @default.
- W3046117575 hasConcept C146849305 @default.
- W3046117575 hasConcept C153180895 @default.
- W3046117575 hasConcept C154945302 @default.
- W3046117575 hasConcept C188441871 @default.
- W3046117575 hasConcept C27181475 @default.
- W3046117575 hasConcept C2989005 @default.
- W3046117575 hasConcept C33923547 @default.
- W3046117575 hasConcept C41008148 @default.
- W3046117575 hasConcept C50644808 @default.
- W3046117575 hasConcept C55078378 @default.
- W3046117575 hasConcept C71924100 @default.
- W3046117575 hasConcept C81363708 @default.
- W3046117575 hasConceptScore W3046117575C105795698 @default.
- W3046117575 hasConceptScore W3046117575C108583219 @default.
- W3046117575 hasConceptScore W3046117575C111919701 @default.
- W3046117575 hasConceptScore W3046117575C118505674 @default.
- W3046117575 hasConceptScore W3046117575C126838900 @default.
- W3046117575 hasConceptScore W3046117575C139945424 @default.
- W3046117575 hasConceptScore W3046117575C143409427 @default.
- W3046117575 hasConceptScore W3046117575C146849305 @default.
- W3046117575 hasConceptScore W3046117575C153180895 @default.