Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046136168> ?p ?o ?g. }
- W3046136168 abstract "Reinforcement learning (RL) is a new propitious research space that is well-known nowadays on the internet of things (IoT), media and social sensing computing are addressing a broad and pertinent task through making decisions sequentially by deterministic and stochastic evolutions. The IoTs extend world connectivity to physical devices like electronic devices network by use interconnect with others over the Internet with the possibility of remotely being supervised and meticulous. In this paper, we comprehensively survey an in-depth assessment of RL techniques in IoT systems focusing on the main known RL techniques like artificial neural network (ANN), Q-learning, Markov Decision Process (MDP), Learning Automata (LA). This study examines and analyses learning technique with focusing on challenges, models performance, similarities and the differences in IoTs accomplish with most correlated proposed state of the art models. The results obtained can be used as a foundation for designing, a model implementation based on the bottlenecks currently assessed with an evaluation of the most fashionable hands-on utility of current methods for reinforcement learning." @default.
- W3046136168 created "2020-08-03" @default.
- W3046136168 creator A5003511760 @default.
- W3046136168 creator A5007717900 @default.
- W3046136168 creator A5047651323 @default.
- W3046136168 creator A5067997994 @default.
- W3046136168 date "2020-07-28" @default.
- W3046136168 modified "2023-10-16" @default.
- W3046136168 title "Reinforcement Learning Rebirth, Techniques, Challenges, and Resolutions" @default.
- W3046136168 cites W1442374986 @default.
- W3046136168 cites W1496741998 @default.
- W3046136168 cites W155018373 @default.
- W3046136168 cites W1977344672 @default.
- W3046136168 cites W1982370770 @default.
- W3046136168 cites W2012492124 @default.
- W3046136168 cites W2025622951 @default.
- W3046136168 cites W2025653191 @default.
- W3046136168 cites W2046376809 @default.
- W3046136168 cites W2049421380 @default.
- W3046136168 cites W2064018461 @default.
- W3046136168 cites W2103285838 @default.
- W3046136168 cites W2121720842 @default.
- W3046136168 cites W2134603844 @default.
- W3046136168 cites W2138238457 @default.
- W3046136168 cites W2150905992 @default.
- W3046136168 cites W2158147140 @default.
- W3046136168 cites W2160531764 @default.
- W3046136168 cites W2160858529 @default.
- W3046136168 cites W2161482971 @default.
- W3046136168 cites W2168787656 @default.
- W3046136168 cites W2405774341 @default.
- W3046136168 cites W2406349003 @default.
- W3046136168 cites W2468951378 @default.
- W3046136168 cites W2529807495 @default.
- W3046136168 cites W2557450880 @default.
- W3046136168 cites W2590373591 @default.
- W3046136168 cites W2749908420 @default.
- W3046136168 cites W2770587725 @default.
- W3046136168 cites W2796864162 @default.
- W3046136168 cites W2797395613 @default.
- W3046136168 cites W2799947440 @default.
- W3046136168 cites W2800971375 @default.
- W3046136168 cites W2826386260 @default.
- W3046136168 cites W2890010580 @default.
- W3046136168 cites W2891655128 @default.
- W3046136168 cites W2907264502 @default.
- W3046136168 cites W2909215621 @default.
- W3046136168 cites W2911007966 @default.
- W3046136168 cites W2911298768 @default.
- W3046136168 cites W2911303106 @default.
- W3046136168 cites W2912027224 @default.
- W3046136168 cites W2912484829 @default.
- W3046136168 cites W2914169461 @default.
- W3046136168 cites W2914282793 @default.
- W3046136168 cites W2917442156 @default.
- W3046136168 cites W2918604149 @default.
- W3046136168 cites W2921129149 @default.
- W3046136168 cites W2921491065 @default.
- W3046136168 cites W2921732122 @default.
- W3046136168 cites W2921810866 @default.
- W3046136168 cites W2922120529 @default.
- W3046136168 cites W2922653089 @default.
- W3046136168 cites W2950134147 @default.
- W3046136168 cites W2963910109 @default.
- W3046136168 cites W2964158509 @default.
- W3046136168 cites W2971674749 @default.
- W3046136168 cites W2990744528 @default.
- W3046136168 cites W3004039017 @default.
- W3046136168 cites W3011195098 @default.
- W3046136168 cites W3100857292 @default.
- W3046136168 cites W3109267343 @default.
- W3046136168 cites W3133156327 @default.
- W3046136168 doi "https://doi.org/10.30630/joiv.4.3.376" @default.
- W3046136168 hasPublicationYear "2020" @default.
- W3046136168 type Work @default.
- W3046136168 sameAs 3046136168 @default.
- W3046136168 citedByCount "6" @default.
- W3046136168 countsByYear W30461361682021 @default.
- W3046136168 countsByYear W30461361682022 @default.
- W3046136168 countsByYear W30461361682023 @default.
- W3046136168 crossrefType "journal-article" @default.
- W3046136168 hasAuthorship W3046136168A5003511760 @default.
- W3046136168 hasAuthorship W3046136168A5007717900 @default.
- W3046136168 hasAuthorship W3046136168A5047651323 @default.
- W3046136168 hasAuthorship W3046136168A5067997994 @default.
- W3046136168 hasConcept C105795698 @default.
- W3046136168 hasConcept C106189395 @default.
- W3046136168 hasConcept C110875604 @default.
- W3046136168 hasConcept C111919701 @default.
- W3046136168 hasConcept C119857082 @default.
- W3046136168 hasConcept C136764020 @default.
- W3046136168 hasConcept C154945302 @default.
- W3046136168 hasConcept C159886148 @default.
- W3046136168 hasConcept C2778572836 @default.
- W3046136168 hasConcept C33923547 @default.
- W3046136168 hasConcept C41008148 @default.
- W3046136168 hasConcept C50644808 @default.
- W3046136168 hasConcept C72434380 @default.
- W3046136168 hasConcept C97541855 @default.
- W3046136168 hasConcept C98045186 @default.