Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046147219> ?p ?o ?g. }
- W3046147219 endingPage "138140" @default.
- W3046147219 startingPage "138129" @default.
- W3046147219 abstract "A pulse-coupled neural network (PCNN) is a promising image segmentation approach that requires no training. However, it is challenging to successfully apply a PCNN to medical image segmentation due to common but difficult scenarios such as irregular object shapes, blurred boundaries, and intensity inhomogeneity. To improve this situation, a novel framework incorporating fuzzy connectedness ( FC ) is proposed. First, a comparative study of the traditional PCNN models is carried out to analyze the framework and firing mechanism. Then, the characteristic matrix of fuzzy connectedness ( CMFC ) is presented for the first time. The CMFC can provide more intensity information and spatial relationships at the pixel level, which is helpful for producing a more reasonable firing mechanism in the PCNN models. Third, by integrating the CMFC into the PCNN framework models, a construction scheme of FC-PCNN models is designed. To illustrate this concept, a general solution that can be applied to different PCNN models is developed. Next, the segmentation performances of the proposed FC-PCNN models are evaluated by comparison with the traditional PCNN models, the traditional segmentation methods, and deep learning methods. The test images include synthetic and real medical images from the Internet and three public medical image datasets. The quantitative and visual comparative analysis demonstrates that the proposed FC-PCNN models outperform the traditional PCNN models and the traditional segmentation methods and achieve competitive performance to the deep learning methods. In addition, the proposed FC-PCNN models have favorable capability to eliminate inference from surrounding artifacts." @default.
- W3046147219 created "2020-08-03" @default.
- W3046147219 creator A5007269591 @default.
- W3046147219 creator A5020115105 @default.
- W3046147219 creator A5020327777 @default.
- W3046147219 creator A5036537085 @default.
- W3046147219 creator A5053088432 @default.
- W3046147219 creator A5055280679 @default.
- W3046147219 creator A5067935076 @default.
- W3046147219 creator A5069334991 @default.
- W3046147219 creator A5080734522 @default.
- W3046147219 date "2020-01-01" @default.
- W3046147219 modified "2023-10-16" @default.
- W3046147219 title "A Novel Framework for Improving Pulse-Coupled Neural Networks With Fuzzy Connectedness for Medical Image Segmentation" @default.
- W3046147219 cites W1903029394 @default.
- W3046147219 cites W1964162596 @default.
- W3046147219 cites W1987969328 @default.
- W3046147219 cites W2000532519 @default.
- W3046147219 cites W2011430131 @default.
- W3046147219 cites W2022613107 @default.
- W3046147219 cites W2025564919 @default.
- W3046147219 cites W2032843526 @default.
- W3046147219 cites W2038218396 @default.
- W3046147219 cites W2039535362 @default.
- W3046147219 cites W2066180616 @default.
- W3046147219 cites W2067123389 @default.
- W3046147219 cites W2067191022 @default.
- W3046147219 cites W2079961815 @default.
- W3046147219 cites W2098979973 @default.
- W3046147219 cites W2099290282 @default.
- W3046147219 cites W2103148294 @default.
- W3046147219 cites W2104095591 @default.
- W3046147219 cites W2108843657 @default.
- W3046147219 cites W2109701261 @default.
- W3046147219 cites W2113622874 @default.
- W3046147219 cites W2114444010 @default.
- W3046147219 cites W2127644182 @default.
- W3046147219 cites W2133003941 @default.
- W3046147219 cites W2145023731 @default.
- W3046147219 cites W2149184914 @default.
- W3046147219 cites W2152826865 @default.
- W3046147219 cites W2166380313 @default.
- W3046147219 cites W2167634460 @default.
- W3046147219 cites W2488622715 @default.
- W3046147219 cites W2560445679 @default.
- W3046147219 cites W2582058104 @default.
- W3046147219 cites W2591946802 @default.
- W3046147219 cites W2611057626 @default.
- W3046147219 cites W2764063958 @default.
- W3046147219 cites W2773747586 @default.
- W3046147219 cites W2783788487 @default.
- W3046147219 cites W2791117644 @default.
- W3046147219 cites W2792569430 @default.
- W3046147219 cites W2792834173 @default.
- W3046147219 cites W2810753213 @default.
- W3046147219 cites W2905562891 @default.
- W3046147219 cites W2907774830 @default.
- W3046147219 cites W2914320852 @default.
- W3046147219 cites W2916412824 @default.
- W3046147219 cites W2922342825 @default.
- W3046147219 doi "https://doi.org/10.1109/access.2020.3012160" @default.
- W3046147219 hasPublicationYear "2020" @default.
- W3046147219 type Work @default.
- W3046147219 sameAs 3046147219 @default.
- W3046147219 citedByCount "5" @default.
- W3046147219 countsByYear W30461472192020 @default.
- W3046147219 countsByYear W30461472192021 @default.
- W3046147219 countsByYear W30461472192022 @default.
- W3046147219 countsByYear W30461472192023 @default.
- W3046147219 crossrefType "journal-article" @default.
- W3046147219 hasAuthorship W3046147219A5007269591 @default.
- W3046147219 hasAuthorship W3046147219A5020115105 @default.
- W3046147219 hasAuthorship W3046147219A5020327777 @default.
- W3046147219 hasAuthorship W3046147219A5036537085 @default.
- W3046147219 hasAuthorship W3046147219A5053088432 @default.
- W3046147219 hasAuthorship W3046147219A5055280679 @default.
- W3046147219 hasAuthorship W3046147219A5067935076 @default.
- W3046147219 hasAuthorship W3046147219A5069334991 @default.
- W3046147219 hasAuthorship W3046147219A5080734522 @default.
- W3046147219 hasBestOaLocation W30461472191 @default.
- W3046147219 hasConcept C124504099 @default.
- W3046147219 hasConcept C153180895 @default.
- W3046147219 hasConcept C154945302 @default.
- W3046147219 hasConcept C15744967 @default.
- W3046147219 hasConcept C201943243 @default.
- W3046147219 hasConcept C31972630 @default.
- W3046147219 hasConcept C41008148 @default.
- W3046147219 hasConcept C50644808 @default.
- W3046147219 hasConcept C542102704 @default.
- W3046147219 hasConcept C58166 @default.
- W3046147219 hasConcept C89600930 @default.
- W3046147219 hasConceptScore W3046147219C124504099 @default.
- W3046147219 hasConceptScore W3046147219C153180895 @default.
- W3046147219 hasConceptScore W3046147219C154945302 @default.
- W3046147219 hasConceptScore W3046147219C15744967 @default.
- W3046147219 hasConceptScore W3046147219C201943243 @default.
- W3046147219 hasConceptScore W3046147219C31972630 @default.
- W3046147219 hasConceptScore W3046147219C41008148 @default.