Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046161533> ?p ?o ?g. }
- W3046161533 endingPage "942" @default.
- W3046161533 startingPage "933" @default.
- W3046161533 abstract "To improve the quality of green tea, low light stress has been used to increase the chlorophyll-a (chl-a) content of tea leaves, although shading treatments sometimes lead to early mortality of tea trees. Therefore, in situ measurement of chl-a and chlorophyll-b (chl-b), which are markers for evaluating light stress and response to changing environmental conditions, can be used to improve tea tree management. Chlorophyll content estimation is one of the most common applications of hyperspectral remote sensing, but most prior studies have evaluated samples grown under relatively low stress. Therefore, the results of prior studies are not applicable for estimating chl-a and chl-b contents of shade-grown tea. Machine learning algorithms have recently attracted attention as an approach for evaluating biochemical properties. In the present study, three different common machine learning algorithms were compared, including random forests, support vector machines and deep belief nets. The ratios of performance to deviation (RPDs) of deep belief nets (DBN) were always larger than 1.4 (the ranges of RPD were 1.49–4.92 and 1.48–5.10 for chl-a and chl-b, respectively), suggesting that DBN is a unique algorithm that can reliably be used for estimation of chl-a and chl-b contents." @default.
- W3046161533 created "2020-08-03" @default.
- W3046161533 creator A5004016354 @default.
- W3046161533 creator A5026260210 @default.
- W3046161533 creator A5041510839 @default.
- W3046161533 date "2020-07-29" @default.
- W3046161533 modified "2023-10-16" @default.
- W3046161533 title "Quantifying chlorophyll-<i>a</i> and <i>b</i> content in tea leaves using hyperspectral reflectance and deep learning" @default.
- W3046161533 cites W173303280 @default.
- W3046161533 cites W1950365613 @default.
- W3046161533 cites W1970198112 @default.
- W3046161533 cites W1974586772 @default.
- W3046161533 cites W1974842331 @default.
- W3046161533 cites W1990673797 @default.
- W3046161533 cites W1998053851 @default.
- W3046161533 cites W2051128904 @default.
- W3046161533 cites W2067138474 @default.
- W3046161533 cites W2082917714 @default.
- W3046161533 cites W2107162052 @default.
- W3046161533 cites W2110022166 @default.
- W3046161533 cites W2130670721 @default.
- W3046161533 cites W2136922672 @default.
- W3046161533 cites W2139212933 @default.
- W3046161533 cites W2139216149 @default.
- W3046161533 cites W2142084805 @default.
- W3046161533 cites W2146754899 @default.
- W3046161533 cites W2151451863 @default.
- W3046161533 cites W2151968140 @default.
- W3046161533 cites W2152039022 @default.
- W3046161533 cites W2163517193 @default.
- W3046161533 cites W2216946510 @default.
- W3046161533 cites W2536511668 @default.
- W3046161533 cites W2558901835 @default.
- W3046161533 cites W2560775042 @default.
- W3046161533 cites W2574060215 @default.
- W3046161533 cites W2577238056 @default.
- W3046161533 cites W2782794252 @default.
- W3046161533 cites W2787894218 @default.
- W3046161533 cites W2808171695 @default.
- W3046161533 cites W2888934202 @default.
- W3046161533 cites W2921970948 @default.
- W3046161533 cites W2945838957 @default.
- W3046161533 cites W2964914474 @default.
- W3046161533 cites W2965479259 @default.
- W3046161533 cites W2967860686 @default.
- W3046161533 cites W2969695601 @default.
- W3046161533 cites W2999406728 @default.
- W3046161533 cites W3000058419 @default.
- W3046161533 cites W3010933766 @default.
- W3046161533 cites W4211189396 @default.
- W3046161533 doi "https://doi.org/10.1080/2150704x.2020.1795294" @default.
- W3046161533 hasPublicationYear "2020" @default.
- W3046161533 type Work @default.
- W3046161533 sameAs 3046161533 @default.
- W3046161533 citedByCount "11" @default.
- W3046161533 countsByYear W30461615332020 @default.
- W3046161533 countsByYear W30461615332021 @default.
- W3046161533 countsByYear W30461615332022 @default.
- W3046161533 countsByYear W30461615332023 @default.
- W3046161533 crossrefType "journal-article" @default.
- W3046161533 hasAuthorship W3046161533A5004016354 @default.
- W3046161533 hasAuthorship W3046161533A5026260210 @default.
- W3046161533 hasAuthorship W3046161533A5041510839 @default.
- W3046161533 hasConcept C108583219 @default.
- W3046161533 hasConcept C108597893 @default.
- W3046161533 hasConcept C120665830 @default.
- W3046161533 hasConcept C121332964 @default.
- W3046161533 hasConcept C121684516 @default.
- W3046161533 hasConcept C127313418 @default.
- W3046161533 hasConcept C154945302 @default.
- W3046161533 hasConcept C159078339 @default.
- W3046161533 hasConcept C169258074 @default.
- W3046161533 hasConcept C177515723 @default.
- W3046161533 hasConcept C2776373379 @default.
- W3046161533 hasConcept C2778902199 @default.
- W3046161533 hasConcept C33923547 @default.
- W3046161533 hasConcept C39432304 @default.
- W3046161533 hasConcept C41008148 @default.
- W3046161533 hasConcept C59822182 @default.
- W3046161533 hasConcept C62649853 @default.
- W3046161533 hasConcept C86803240 @default.
- W3046161533 hasConcept C97385483 @default.
- W3046161533 hasConceptScore W3046161533C108583219 @default.
- W3046161533 hasConceptScore W3046161533C108597893 @default.
- W3046161533 hasConceptScore W3046161533C120665830 @default.
- W3046161533 hasConceptScore W3046161533C121332964 @default.
- W3046161533 hasConceptScore W3046161533C121684516 @default.
- W3046161533 hasConceptScore W3046161533C127313418 @default.
- W3046161533 hasConceptScore W3046161533C154945302 @default.
- W3046161533 hasConceptScore W3046161533C159078339 @default.
- W3046161533 hasConceptScore W3046161533C169258074 @default.
- W3046161533 hasConceptScore W3046161533C177515723 @default.
- W3046161533 hasConceptScore W3046161533C2776373379 @default.
- W3046161533 hasConceptScore W3046161533C2778902199 @default.
- W3046161533 hasConceptScore W3046161533C33923547 @default.
- W3046161533 hasConceptScore W3046161533C39432304 @default.
- W3046161533 hasConceptScore W3046161533C41008148 @default.
- W3046161533 hasConceptScore W3046161533C59822182 @default.