Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046194626> ?p ?o ?g. }
- W3046194626 endingPage "14507" @default.
- W3046194626 startingPage "14491" @default.
- W3046194626 abstract "Abstract. Ground-based radar and radiometer data observed during the 2017–2018 winter season over the Pyeongchang area on the east coast of the Korean Peninsula were used to simultaneously estimate both the cloud liquid water path and snowfall rate for three types of snow clouds: near-surface, shallow, and deep. Surveying all the observed data, it is found that near-surface clouds are the most frequently observed cloud type with an area fraction of over 60 %, while deep clouds contribute the most in snowfall volume with about 50 % of the total. The probability distributions of snowfall rates are clearly different among the three types of clouds, with the vast majority hardly reaching 0.3 mm h−1 (liquid water equivalent snowfall rate) for near-surface, 0.5 mm h−1 for shallow, and 1 mm h−1 for deep clouds. However, the liquid water paths in the three types of clouds all have the substantial probability to reach 500 g m−2. There is no clear correlation found between snowfall rate and the liquid water path for any of the cloud types. Based on all observed snow profiles, brightness temperatures at Global Precipitation Measurement Microwave Imager (GPM/GMI) channels are simulated, and the ability of a Bayesian algorithm to retrieve snowfall rate is examined using half the profiles as observations and the other half as an a priori database. Under an idealized scenario, i.e., without considering the uncertainties caused by surface emissivity, ice particle size distribution, and particle shape, the study found that the correlation as expressed by R2 between the “retrieved” and “observed” snowfall rates is about 0.32, 0.41, and 0.62, respectively, for near-surface, shallow, and deep snow clouds over land surfaces; these numbers basically indicate the upper limits capped by cloud natural variability, to which the retrieval skill of a Bayesian retrieval algorithm can reach. A hypothetical retrieval for the same clouds but over ocean is also studied, and a major improvement in skills is found for near-surface clouds with R2 increasing from 0.32 to 0.52, while a smaller improvement is found for shallow and deep clouds. This study provides a general picture of the microphysical characteristics of the different types of snow clouds and points out the associated challenges in retrieving their snowfall rate from passive microwave observations." @default.
- W3046194626 created "2020-08-03" @default.
- W3046194626 creator A5041410438 @default.
- W3046194626 creator A5044592592 @default.
- W3046194626 creator A5050764325 @default.
- W3046194626 creator A5055508803 @default.
- W3046194626 creator A5086253920 @default.
- W3046194626 date "2020-11-30" @default.
- W3046194626 modified "2023-10-17" @default.
- W3046194626 title "Microphysical properties of three types of snow clouds: implication for satellite snowfall retrievals" @default.
- W3046194626 cites W1519922352 @default.
- W3046194626 cites W1522265489 @default.
- W3046194626 cites W1535027274 @default.
- W3046194626 cites W160124648 @default.
- W3046194626 cites W1613795631 @default.
- W3046194626 cites W1667819958 @default.
- W3046194626 cites W1927113196 @default.
- W3046194626 cites W193288818 @default.
- W3046194626 cites W1952367027 @default.
- W3046194626 cites W1973084147 @default.
- W3046194626 cites W1974477445 @default.
- W3046194626 cites W1979070704 @default.
- W3046194626 cites W1979895664 @default.
- W3046194626 cites W1986397813 @default.
- W3046194626 cites W1996367659 @default.
- W3046194626 cites W1999377743 @default.
- W3046194626 cites W2009186093 @default.
- W3046194626 cites W2028990222 @default.
- W3046194626 cites W2040427217 @default.
- W3046194626 cites W2058529744 @default.
- W3046194626 cites W2066324060 @default.
- W3046194626 cites W2077712623 @default.
- W3046194626 cites W2086292526 @default.
- W3046194626 cites W2088306274 @default.
- W3046194626 cites W2091458129 @default.
- W3046194626 cites W2094869244 @default.
- W3046194626 cites W2114836436 @default.
- W3046194626 cites W2131094327 @default.
- W3046194626 cites W2133868929 @default.
- W3046194626 cites W2136400621 @default.
- W3046194626 cites W2139699111 @default.
- W3046194626 cites W2154721205 @default.
- W3046194626 cites W2161112134 @default.
- W3046194626 cites W2161735721 @default.
- W3046194626 cites W2162246342 @default.
- W3046194626 cites W2277349680 @default.
- W3046194626 cites W2346543612 @default.
- W3046194626 cites W2466398533 @default.
- W3046194626 cites W2471925216 @default.
- W3046194626 cites W2475983985 @default.
- W3046194626 cites W2521727227 @default.
- W3046194626 cites W2560821854 @default.
- W3046194626 cites W2562697610 @default.
- W3046194626 cites W2578768658 @default.
- W3046194626 cites W2607398939 @default.
- W3046194626 cites W2611772571 @default.
- W3046194626 cites W2620933084 @default.
- W3046194626 cites W2672495453 @default.
- W3046194626 cites W2744703344 @default.
- W3046194626 cites W2746585850 @default.
- W3046194626 cites W2767342244 @default.
- W3046194626 cites W2767677688 @default.
- W3046194626 cites W2917267944 @default.
- W3046194626 cites W2918983248 @default.
- W3046194626 cites W2963318936 @default.
- W3046194626 cites W3004729886 @default.
- W3046194626 cites W3042434538 @default.
- W3046194626 doi "https://doi.org/10.5194/acp-20-14491-2020" @default.
- W3046194626 hasPublicationYear "2020" @default.
- W3046194626 type Work @default.
- W3046194626 sameAs 3046194626 @default.
- W3046194626 citedByCount "12" @default.
- W3046194626 countsByYear W30461946262021 @default.
- W3046194626 countsByYear W30461946262022 @default.
- W3046194626 countsByYear W30461946262023 @default.
- W3046194626 crossrefType "journal-article" @default.
- W3046194626 hasAuthorship W3046194626A5041410438 @default.
- W3046194626 hasAuthorship W3046194626A5044592592 @default.
- W3046194626 hasAuthorship W3046194626A5050764325 @default.
- W3046194626 hasAuthorship W3046194626A5055508803 @default.
- W3046194626 hasAuthorship W3046194626A5086253920 @default.
- W3046194626 hasBestOaLocation W30461946261 @default.
- W3046194626 hasConcept C107054158 @default.
- W3046194626 hasConcept C111919701 @default.
- W3046194626 hasConcept C121332964 @default.
- W3046194626 hasConcept C127313418 @default.
- W3046194626 hasConcept C153294291 @default.
- W3046194626 hasConcept C197046000 @default.
- W3046194626 hasConcept C205649164 @default.
- W3046194626 hasConcept C2778516841 @default.
- W3046194626 hasConcept C2778877292 @default.
- W3046194626 hasConcept C39432304 @default.
- W3046194626 hasConcept C41008148 @default.
- W3046194626 hasConcept C44838205 @default.
- W3046194626 hasConcept C53802167 @default.
- W3046194626 hasConcept C62520636 @default.
- W3046194626 hasConcept C79974875 @default.
- W3046194626 hasConcept C85502700 @default.