Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046234331> ?p ?o ?g. }
- W3046234331 endingPage "101251" @default.
- W3046234331 startingPage "101251" @default.
- W3046234331 abstract "Credit ratings are one of the primary keys that reflect the level of riskiness and reliability of corporations to meet their financial obligations. Rating agencies tend to take extended periods of time to provide new ratings and update older ones. Therefore, credit scoring assessments using artificial intelligence has gained a lot of interest in recent years. Successful machine learning methods can provide rapid analysis of credit scores while updating older ones on a daily time scale. Related studies have shown that neural networks and support vector machines outperform other techniques by providing better prediction accuracy. The purpose of this paper is two fold. First, we provide a survey and a comparative analysis of results from literature applying machine learning techniques to predict credit rating. Second, we apply ourselves four machine learning techniques deemed useful from previous studies (Bagged Decision Trees, Random Forest, support vector machine and Multilayer Perceptron) to the same datasets. We evaluate the results using a 10-fold cross validation technique. The results of the experiment for the datasets chosen show superior performance for decision tree based models. In addition to the conventional accuracy measure of classifiers, we introduce a measure of accuracy based on notches called ”Notch Distance” to analyze the performance of the above classifiers in the specific context of credit rating. This measure tells us how far the predictions are from the true ratings. We further compare the performance of three major rating agencies, Standard & Poors, Moody’s and Fitch where we show that the difference in their ratings is comparable with the decision tree prediction versus the actual rating on the test dataset." @default.
- W3046234331 created "2020-08-07" @default.
- W3046234331 creator A5026524528 @default.
- W3046234331 creator A5052614228 @default.
- W3046234331 creator A5062407012 @default.
- W3046234331 date "2020-11-01" @default.
- W3046234331 modified "2023-09-30" @default.
- W3046234331 title "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees" @default.
- W3046234331 cites W1128184534 @default.
- W3046234331 cites W1575456056 @default.
- W3046234331 cites W1966577366 @default.
- W3046234331 cites W1968023063 @default.
- W3046234331 cites W1970591008 @default.
- W3046234331 cites W1975421067 @default.
- W3046234331 cites W1986968751 @default.
- W3046234331 cites W1990113270 @default.
- W3046234331 cites W1990696070 @default.
- W3046234331 cites W1993922907 @default.
- W3046234331 cites W1995705912 @default.
- W3046234331 cites W1999750397 @default.
- W3046234331 cites W2005829528 @default.
- W3046234331 cites W2008724782 @default.
- W3046234331 cites W2009411066 @default.
- W3046234331 cites W2012079387 @default.
- W3046234331 cites W2016031348 @default.
- W3046234331 cites W2016361990 @default.
- W3046234331 cites W2022891795 @default.
- W3046234331 cites W2029869759 @default.
- W3046234331 cites W2031360074 @default.
- W3046234331 cites W2032170121 @default.
- W3046234331 cites W2032784723 @default.
- W3046234331 cites W2034465910 @default.
- W3046234331 cites W2047869949 @default.
- W3046234331 cites W2048289813 @default.
- W3046234331 cites W2050532363 @default.
- W3046234331 cites W2051455168 @default.
- W3046234331 cites W2067758534 @default.
- W3046234331 cites W2070236178 @default.
- W3046234331 cites W2070253211 @default.
- W3046234331 cites W2072875480 @default.
- W3046234331 cites W2073109200 @default.
- W3046234331 cites W2076129045 @default.
- W3046234331 cites W2079492342 @default.
- W3046234331 cites W2081180521 @default.
- W3046234331 cites W2085831731 @default.
- W3046234331 cites W2093829413 @default.
- W3046234331 cites W2095092051 @default.
- W3046234331 cites W2115568940 @default.
- W3046234331 cites W2121850687 @default.
- W3046234331 cites W2121970262 @default.
- W3046234331 cites W2124892836 @default.
- W3046234331 cites W2128915443 @default.
- W3046234331 cites W2131816657 @default.
- W3046234331 cites W2136592420 @default.
- W3046234331 cites W2163094209 @default.
- W3046234331 cites W2165063012 @default.
- W3046234331 cites W2278519563 @default.
- W3046234331 cites W2295978047 @default.
- W3046234331 cites W2313081741 @default.
- W3046234331 cites W2324188699 @default.
- W3046234331 cites W2329680044 @default.
- W3046234331 cites W2343646450 @default.
- W3046234331 cites W2501505505 @default.
- W3046234331 cites W2591595337 @default.
- W3046234331 cites W2788025656 @default.
- W3046234331 cites W2911964244 @default.
- W3046234331 cites W2953276351 @default.
- W3046234331 cites W3121588992 @default.
- W3046234331 cites W4239510810 @default.
- W3046234331 cites W4239874317 @default.
- W3046234331 cites W2139431144 @default.
- W3046234331 doi "https://doi.org/10.1016/j.najef.2020.101251" @default.
- W3046234331 hasPublicationYear "2020" @default.
- W3046234331 type Work @default.
- W3046234331 sameAs 3046234331 @default.
- W3046234331 citedByCount "27" @default.
- W3046234331 countsByYear W30462343312020 @default.
- W3046234331 countsByYear W30462343312021 @default.
- W3046234331 countsByYear W30462343312022 @default.
- W3046234331 countsByYear W30462343312023 @default.
- W3046234331 crossrefType "journal-article" @default.
- W3046234331 hasAuthorship W3046234331A5026524528 @default.
- W3046234331 hasAuthorship W3046234331A5052614228 @default.
- W3046234331 hasAuthorship W3046234331A5062407012 @default.
- W3046234331 hasBestOaLocation W30462343312 @default.
- W3046234331 hasConcept C10138342 @default.
- W3046234331 hasConcept C119857082 @default.
- W3046234331 hasConcept C121332964 @default.
- W3046234331 hasConcept C12267149 @default.
- W3046234331 hasConcept C124101348 @default.
- W3046234331 hasConcept C154945302 @default.
- W3046234331 hasConcept C162324750 @default.
- W3046234331 hasConcept C163258240 @default.
- W3046234331 hasConcept C169258074 @default.
- W3046234331 hasConcept C179717631 @default.
- W3046234331 hasConcept C205208723 @default.
- W3046234331 hasConcept C2780009758 @default.
- W3046234331 hasConcept C41008148 @default.