Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046243198> ?p ?o ?g. }
- W3046243198 abstract "Abstract Background COVID-19 is an emergent infectious disease that has spread geographically to become a global pandemic. While much research focuses on the epidemiological and virological aspects of COVID-19 transmission, there remains an important gap in knowledge regarding the drivers of geographical diffusion between places, in particular at the global scale. Here, we use quantile regression to model the roles of globalisation, human settlement and population characteristics as socio-spatial determinants of reported COVID-19 diffusion over a six-week period in March and April 2020. Our exploratory analysis is based on reported COVID-19 data published by Johns Hopkins University which, despite its limitations, serves as the best repository of reported COVID-19 cases across nations. Results The quantile regression model suggests that globalisation, settlement, and population characteristics related to high human mobility and interaction predict reported disease diffusion. Human development level (HDI) and total population predict COVID-19 diffusion in countries with a high number of total reported cases (per million) whereas larger household size, older populations, and globalisation tied to human interaction predict COVID-19 diffusion in countries with a low number of total reported cases (per million). Population density, and population characteristics such as total population, older populations, and household size are strong predictors in early weeks but have a muted impact over time on reported COVID-19 diffusion. In contrast, the impacts of interpersonal and trade globalisation are enhanced over time, indicating that human mobility may best explain sustained disease diffusion. Conclusions Model results confirm that globalisation, settlement and population characteristics, and variables tied to high human mobility lead to greater reported disease diffusion. These outcomes serve to inform suppression strategies, particularly as they are related to anticipated relocation diffusion from more- to less-developed countries and regions, and hierarchical diffusion from countries with higher population and density. It is likely that many of these processes are replicated at smaller geographical scales both within countries and within regions. Epidemiological strategies must therefore be tailored according to human mobility patterns, as well as countries’ settlement and population characteristics. We suggest that limiting human mobility to the greatest extent practical will best restrain COVID-19 diffusion, which in the absence of widespread vaccination may be one of the best lines of epidemiological defense." @default.
- W3046243198 created "2020-08-07" @default.
- W3046243198 creator A5000123582 @default.
- W3046243198 creator A5008429949 @default.
- W3046243198 creator A5010893313 @default.
- W3046243198 creator A5017995553 @default.
- W3046243198 creator A5030509561 @default.
- W3046243198 creator A5048526296 @default.
- W3046243198 creator A5075707801 @default.
- W3046243198 date "2021-05-20" @default.
- W3046243198 modified "2023-10-14" @default.
- W3046243198 title "The socio-spatial determinants of COVID-19 diffusion: the impact of globalisation, settlement characteristics and population" @default.
- W3046243198 cites W1513151616 @default.
- W3046243198 cites W1865336837 @default.
- W3046243198 cites W1964252424 @default.
- W3046243198 cites W1966503239 @default.
- W3046243198 cites W1997222271 @default.
- W3046243198 cites W2023987310 @default.
- W3046243198 cites W2032666861 @default.
- W3046243198 cites W2036966293 @default.
- W3046243198 cites W2046820182 @default.
- W3046243198 cites W2049174203 @default.
- W3046243198 cites W2082229621 @default.
- W3046243198 cites W2088858471 @default.
- W3046243198 cites W2096904991 @default.
- W3046243198 cites W2100776472 @default.
- W3046243198 cites W2118711140 @default.
- W3046243198 cites W2131706225 @default.
- W3046243198 cites W2147646644 @default.
- W3046243198 cites W2159191994 @default.
- W3046243198 cites W2264155722 @default.
- W3046243198 cites W2480250342 @default.
- W3046243198 cites W2747749962 @default.
- W3046243198 cites W2783065878 @default.
- W3046243198 cites W2785400778 @default.
- W3046243198 cites W2795516751 @default.
- W3046243198 cites W2957705409 @default.
- W3046243198 cites W2999318660 @default.
- W3046243198 cites W3003217347 @default.
- W3046243198 cites W3006419170 @default.
- W3046243198 cites W3008294222 @default.
- W3046243198 cites W3008443627 @default.
- W3046243198 cites W3008786256 @default.
- W3046243198 cites W3009468976 @default.
- W3046243198 cites W3009946390 @default.
- W3046243198 cites W3010062253 @default.
- W3046243198 cites W3010131837 @default.
- W3046243198 cites W3011534780 @default.
- W3046243198 cites W3011662277 @default.
- W3046243198 cites W3011999140 @default.
- W3046243198 cites W3012297079 @default.
- W3046243198 cites W3013041117 @default.
- W3046243198 cites W3013594674 @default.
- W3046243198 cites W3013649595 @default.
- W3046243198 cites W3014438290 @default.
- W3046243198 cites W3014636451 @default.
- W3046243198 cites W3015567158 @default.
- W3046243198 cites W3015792206 @default.
- W3046243198 cites W3016523961 @default.
- W3046243198 cites W3017111501 @default.
- W3046243198 cites W3018782651 @default.
- W3046243198 cites W3023416072 @default.
- W3046243198 cites W3034312608 @default.
- W3046243198 cites W3034686331 @default.
- W3046243198 cites W3034730434 @default.
- W3046243198 cites W3036137498 @default.
- W3046243198 cites W3045752894 @default.
- W3046243198 cites W3047695917 @default.
- W3046243198 cites W3048396028 @default.
- W3046243198 cites W3084586512 @default.
- W3046243198 cites W3087716147 @default.
- W3046243198 cites W3087750091 @default.
- W3046243198 cites W3094133879 @default.
- W3046243198 cites W3094964170 @default.
- W3046243198 cites W3095961138 @default.
- W3046243198 cites W3096879084 @default.
- W3046243198 cites W3101120199 @default.
- W3046243198 cites W3102878268 @default.
- W3046243198 cites W3106603260 @default.
- W3046243198 cites W3118442996 @default.
- W3046243198 cites W3124691367 @default.
- W3046243198 cites W3134396943 @default.
- W3046243198 cites W4206526247 @default.
- W3046243198 cites W4232731667 @default.
- W3046243198 cites W4241653265 @default.
- W3046243198 doi "https://doi.org/10.1186/s12992-021-00707-2" @default.
- W3046243198 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8135172" @default.
- W3046243198 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34016145" @default.
- W3046243198 hasPublicationYear "2021" @default.
- W3046243198 type Work @default.
- W3046243198 sameAs 3046243198 @default.
- W3046243198 citedByCount "48" @default.
- W3046243198 countsByYear W30462431982021 @default.
- W3046243198 countsByYear W30462431982022 @default.
- W3046243198 countsByYear W30462431982023 @default.
- W3046243198 crossrefType "journal-article" @default.
- W3046243198 hasAuthorship W3046243198A5000123582 @default.
- W3046243198 hasAuthorship W3046243198A5008429949 @default.
- W3046243198 hasAuthorship W3046243198A5010893313 @default.
- W3046243198 hasAuthorship W3046243198A5017995553 @default.