Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046263807> ?p ?o ?g. }
- W3046263807 endingPage "589" @default.
- W3046263807 startingPage "554" @default.
- W3046263807 abstract "Abstract We consider an iterative computation of negative curvature directions, in large-scale unconstrained optimization frameworks, needed for ensuring the convergence toward stationary points which satisfy second-order necessary optimality conditions. We show that to the latter purpose, we can fruitfully couple the conjugate gradient (CG) method with a recently introduced approach involving the use of the numeral called Grossone . In particular, recalling that in principle the CG method is well posed only when solving positive definite linear systems, our proposal exploits the use of grossone to enhance the performance of the CG, allowing the computation of negative curvature directions in the indefinite case, too. Our overall method could be used to significantly generalize the theory in state-of-the-art literature. Moreover, it straightforwardly allows the solution of Newton’s equation in optimization frameworks, even in nonconvex problems. We remark that our iterative procedure to compute a negative curvature direction does not require the storage of any matrix, simply needing to store a couple of vectors. This definitely represents an advance with respect to current results in the literature." @default.
- W3046263807 created "2020-08-07" @default.
- W3046263807 creator A5008549672 @default.
- W3046263807 creator A5042713763 @default.
- W3046263807 creator A5049314822 @default.
- W3046263807 creator A5085417391 @default.
- W3046263807 date "2020-07-31" @default.
- W3046263807 modified "2023-09-30" @default.
- W3046263807 title "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization" @default.
- W3046263807 cites W1580352598 @default.
- W3046263807 cites W1977490735 @default.
- W3046263807 cites W1977767576 @default.
- W3046263807 cites W1984488466 @default.
- W3046263807 cites W1990689599 @default.
- W3046263807 cites W1993650230 @default.
- W3046263807 cites W1999750197 @default.
- W3046263807 cites W2018197623 @default.
- W3046263807 cites W2018850201 @default.
- W3046263807 cites W2023018700 @default.
- W3046263807 cites W2039665200 @default.
- W3046263807 cites W2044348175 @default.
- W3046263807 cites W2045676435 @default.
- W3046263807 cites W2050193462 @default.
- W3046263807 cites W2057565823 @default.
- W3046263807 cites W2059125718 @default.
- W3046263807 cites W2061320783 @default.
- W3046263807 cites W2068299070 @default.
- W3046263807 cites W2081397705 @default.
- W3046263807 cites W2093499949 @default.
- W3046263807 cites W2100635047 @default.
- W3046263807 cites W2146773115 @default.
- W3046263807 cites W2149454052 @default.
- W3046263807 cites W2158928062 @default.
- W3046263807 cites W2161756383 @default.
- W3046263807 cites W2316564661 @default.
- W3046263807 cites W2329909818 @default.
- W3046263807 cites W2622982709 @default.
- W3046263807 cites W2765136223 @default.
- W3046263807 cites W2766556641 @default.
- W3046263807 cites W2768203990 @default.
- W3046263807 cites W2770331402 @default.
- W3046263807 cites W2770640268 @default.
- W3046263807 cites W2796229054 @default.
- W3046263807 cites W2819991038 @default.
- W3046263807 cites W2949465332 @default.
- W3046263807 cites W2962719227 @default.
- W3046263807 cites W2963321060 @default.
- W3046263807 cites W3000250712 @default.
- W3046263807 cites W3006576224 @default.
- W3046263807 cites W3104926363 @default.
- W3046263807 cites W65420758 @default.
- W3046263807 doi "https://doi.org/10.1007/s10957-020-01717-7" @default.
- W3046263807 hasPublicationYear "2020" @default.
- W3046263807 type Work @default.
- W3046263807 sameAs 3046263807 @default.
- W3046263807 citedByCount "17" @default.
- W3046263807 countsByYear W30462638072020 @default.
- W3046263807 countsByYear W30462638072021 @default.
- W3046263807 countsByYear W30462638072022 @default.
- W3046263807 countsByYear W30462638072023 @default.
- W3046263807 crossrefType "journal-article" @default.
- W3046263807 hasAuthorship W3046263807A5008549672 @default.
- W3046263807 hasAuthorship W3046263807A5042713763 @default.
- W3046263807 hasAuthorship W3046263807A5049314822 @default.
- W3046263807 hasAuthorship W3046263807A5085417391 @default.
- W3046263807 hasBestOaLocation W30462638071 @default.
- W3046263807 hasConcept C11413529 @default.
- W3046263807 hasConcept C121332964 @default.
- W3046263807 hasConcept C126255220 @default.
- W3046263807 hasConcept C137836250 @default.
- W3046263807 hasConcept C159694833 @default.
- W3046263807 hasConcept C162324750 @default.
- W3046263807 hasConcept C195065555 @default.
- W3046263807 hasConcept C24858836 @default.
- W3046263807 hasConcept C2524010 @default.
- W3046263807 hasConcept C26517878 @default.
- W3046263807 hasConcept C2777303404 @default.
- W3046263807 hasConcept C2778755073 @default.
- W3046263807 hasConcept C28826006 @default.
- W3046263807 hasConcept C33923547 @default.
- W3046263807 hasConcept C38652104 @default.
- W3046263807 hasConcept C41008148 @default.
- W3046263807 hasConcept C45374587 @default.
- W3046263807 hasConcept C50522688 @default.
- W3046263807 hasConcept C62520636 @default.
- W3046263807 hasConcept C64980692 @default.
- W3046263807 hasConcept C81184566 @default.
- W3046263807 hasConceptScore W3046263807C11413529 @default.
- W3046263807 hasConceptScore W3046263807C121332964 @default.
- W3046263807 hasConceptScore W3046263807C126255220 @default.
- W3046263807 hasConceptScore W3046263807C137836250 @default.
- W3046263807 hasConceptScore W3046263807C159694833 @default.
- W3046263807 hasConceptScore W3046263807C162324750 @default.
- W3046263807 hasConceptScore W3046263807C195065555 @default.
- W3046263807 hasConceptScore W3046263807C24858836 @default.
- W3046263807 hasConceptScore W3046263807C2524010 @default.
- W3046263807 hasConceptScore W3046263807C26517878 @default.
- W3046263807 hasConceptScore W3046263807C2777303404 @default.