Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046264930> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3046264930 abstract "Heart disease is one of the leading cause deaths of worldwide. Prediction of cardiovascular infection is a critical challenge in the area of clinical data analysis. Data mining techniques are providing an effective decision and significant results on data that are used widely for predicting. The purpose of this paper is to propose a novel approach with aims to find a noteworthy method to diagnose heart disease prediction. In this research, a unique dataset was created by combining the Cleveland dataset and Stalog heart disease datasets collected from the UCI ML repository. The new dataset contains 14 medical parameters such as age, sex, blood pressure, and 568 instances for training and prediction heart disease. This paper offers a novel methodology of NNDT (Neural Network and Decision Tree) that uses Neural Network for training model and Decision Tree to test classification for better heart disease prediction. The performance of the proposed approach have been compared with Naïve Bayes, Support Vector Machine, Neural Network, Voted Perceptron, and Decision Tree algorithms. The results showed that the accuracy and performance improved as compared to other techniques and methods. This study enables the researchers to analyze the heart disease data with a new approach to predict heart diseases to maintain human health." @default.
- W3046264930 created "2020-08-07" @default.
- W3046264930 creator A5012336081 @default.
- W3046264930 creator A5043014513 @default.
- W3046264930 creator A5045460044 @default.
- W3046264930 creator A5067803447 @default.
- W3046264930 date "2020-05-28" @default.
- W3046264930 modified "2023-09-27" @default.
- W3046264930 title "An Approach of Predicting Heart Disease Using a Hybrid Neural Network and Decision Tree" @default.
- W3046264930 cites W1989164753 @default.
- W3046264930 cites W2020176002 @default.
- W3046264930 cites W2026841079 @default.
- W3046264930 cites W2062302861 @default.
- W3046264930 cites W2078738711 @default.
- W3046264930 cites W2080084655 @default.
- W3046264930 cites W2103069675 @default.
- W3046264930 cites W2147273498 @default.
- W3046264930 cites W2169143772 @default.
- W3046264930 cites W2173730923 @default.
- W3046264930 cites W2531733772 @default.
- W3046264930 cites W2545758574 @default.
- W3046264930 cites W2559088558 @default.
- W3046264930 cites W2789638108 @default.
- W3046264930 cites W2941867007 @default.
- W3046264930 cites W4236137412 @default.
- W3046264930 doi "https://doi.org/10.1145/3404687.3404704" @default.
- W3046264930 hasPublicationYear "2020" @default.
- W3046264930 type Work @default.
- W3046264930 sameAs 3046264930 @default.
- W3046264930 citedByCount "2" @default.
- W3046264930 countsByYear W30462649302021 @default.
- W3046264930 countsByYear W30462649302023 @default.
- W3046264930 crossrefType "proceedings-article" @default.
- W3046264930 hasAuthorship W3046264930A5012336081 @default.
- W3046264930 hasAuthorship W3046264930A5043014513 @default.
- W3046264930 hasAuthorship W3046264930A5045460044 @default.
- W3046264930 hasAuthorship W3046264930A5067803447 @default.
- W3046264930 hasConcept C119857082 @default.
- W3046264930 hasConcept C12267149 @default.
- W3046264930 hasConcept C124101348 @default.
- W3046264930 hasConcept C154945302 @default.
- W3046264930 hasConcept C164705383 @default.
- W3046264930 hasConcept C179717631 @default.
- W3046264930 hasConcept C2780074459 @default.
- W3046264930 hasConcept C41008148 @default.
- W3046264930 hasConcept C50644808 @default.
- W3046264930 hasConcept C52001869 @default.
- W3046264930 hasConcept C71924100 @default.
- W3046264930 hasConcept C84525736 @default.
- W3046264930 hasConceptScore W3046264930C119857082 @default.
- W3046264930 hasConceptScore W3046264930C12267149 @default.
- W3046264930 hasConceptScore W3046264930C124101348 @default.
- W3046264930 hasConceptScore W3046264930C154945302 @default.
- W3046264930 hasConceptScore W3046264930C164705383 @default.
- W3046264930 hasConceptScore W3046264930C179717631 @default.
- W3046264930 hasConceptScore W3046264930C2780074459 @default.
- W3046264930 hasConceptScore W3046264930C41008148 @default.
- W3046264930 hasConceptScore W3046264930C50644808 @default.
- W3046264930 hasConceptScore W3046264930C52001869 @default.
- W3046264930 hasConceptScore W3046264930C71924100 @default.
- W3046264930 hasConceptScore W3046264930C84525736 @default.
- W3046264930 hasLocation W30462649301 @default.
- W3046264930 hasOpenAccess W3046264930 @default.
- W3046264930 hasPrimaryLocation W30462649301 @default.
- W3046264930 hasRelatedWork W1470425429 @default.
- W3046264930 hasRelatedWork W3022791929 @default.
- W3046264930 hasRelatedWork W3186233728 @default.
- W3046264930 hasRelatedWork W4221021152 @default.
- W3046264930 hasRelatedWork W4223589032 @default.
- W3046264930 hasRelatedWork W4291177832 @default.
- W3046264930 hasRelatedWork W4308092048 @default.
- W3046264930 hasRelatedWork W4377964522 @default.
- W3046264930 hasRelatedWork W4384345534 @default.
- W3046264930 hasRelatedWork W4385810203 @default.
- W3046264930 isParatext "false" @default.
- W3046264930 isRetracted "false" @default.
- W3046264930 magId "3046264930" @default.
- W3046264930 workType "article" @default.