Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046266918> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3046266918 abstract "Operation and maintenance of a fleet always require a high level of readiness, reduced cost, and improved safety. In order to achieve these goals, it is essential to develop and determine an appropriate maintenance programme for the components in use. A failure analysis involving failure model selection, robust parameter estimation, probabilistic decision making, and assessing the cost-effectiveness of the decisions are the key to the selection of a proper maintenance programme. Two significant challenges faced in failure analysis studies are, minimizing the uncertainty associated with model selection and making strategic decisions based on few observed failures. In this thesis, we try to resolve some of these problems and evaluate the cost-effectiveness of the selections. We focus on choosing the best model from a model space and robust estimation of quantiles leading to the selection of optimal repair and replacement time of units. We first explore the repair and replacement cost of a unit in a system. We design a simulation study to assess the performance of the parameter estimation methods, maximum likelihood estimation (MLE), and median rank regression method (MRR) in estimating quantiles of the Weibull distribution. Then, we compare the models; Weibull, gamma, log-normal, log-logistic, and inverse-Gaussian in failure analysis. With an example, we show that the Weibull and the gamma distributions provide competing fits to the failure data. Next, we demonstrate the use of Bayesian model averaging in accounting for that model uncertainty. We derive an average model for the failure observations with respective posterior model probabilities. Then, we illustrate the cost-effectiveness of the selected model by comparing the distribution of the total replacement and repair cost. In the second part of the thesis, we discuss the prior information. Initially, we assume, the parameters of the Weibull distribution are dependent by a function of the form rho = sigma/mu and re-parameterize the Weibull distribution. Then we propose a new Jeffreys’ prior for the parameters mu and rho. Finally, we designed a simulation study to assess the performance of the new Jeffreys’ prior compared to the MLE." @default.
- W3046266918 created "2020-08-07" @default.
- W3046266918 creator A5044198823 @default.
- W3046266918 date "2019-01-01" @default.
- W3046266918 modified "2023-09-27" @default.
- W3046266918 title "Risk Analysis and Probabilistic Decision Making for Censored Failure Data" @default.
- W3046266918 hasPublicationYear "2019" @default.
- W3046266918 type Work @default.
- W3046266918 sameAs 3046266918 @default.
- W3046266918 citedByCount "0" @default.
- W3046266918 crossrefType "dissertation" @default.
- W3046266918 hasAuthorship W3046266918A5044198823 @default.
- W3046266918 hasConcept C105795698 @default.
- W3046266918 hasConcept C107673813 @default.
- W3046266918 hasConcept C114289077 @default.
- W3046266918 hasConcept C118671147 @default.
- W3046266918 hasConcept C119043178 @default.
- W3046266918 hasConcept C119857082 @default.
- W3046266918 hasConcept C127413603 @default.
- W3046266918 hasConcept C149782125 @default.
- W3046266918 hasConcept C173291955 @default.
- W3046266918 hasConcept C200601418 @default.
- W3046266918 hasConcept C33114746 @default.
- W3046266918 hasConcept C33923547 @default.
- W3046266918 hasConcept C41008148 @default.
- W3046266918 hasConcept C49937458 @default.
- W3046266918 hasConcept C81917197 @default.
- W3046266918 hasConceptScore W3046266918C105795698 @default.
- W3046266918 hasConceptScore W3046266918C107673813 @default.
- W3046266918 hasConceptScore W3046266918C114289077 @default.
- W3046266918 hasConceptScore W3046266918C118671147 @default.
- W3046266918 hasConceptScore W3046266918C119043178 @default.
- W3046266918 hasConceptScore W3046266918C119857082 @default.
- W3046266918 hasConceptScore W3046266918C127413603 @default.
- W3046266918 hasConceptScore W3046266918C149782125 @default.
- W3046266918 hasConceptScore W3046266918C173291955 @default.
- W3046266918 hasConceptScore W3046266918C200601418 @default.
- W3046266918 hasConceptScore W3046266918C33114746 @default.
- W3046266918 hasConceptScore W3046266918C33923547 @default.
- W3046266918 hasConceptScore W3046266918C41008148 @default.
- W3046266918 hasConceptScore W3046266918C49937458 @default.
- W3046266918 hasConceptScore W3046266918C81917197 @default.
- W3046266918 hasLocation W30462669181 @default.
- W3046266918 hasOpenAccess W3046266918 @default.
- W3046266918 hasPrimaryLocation W30462669181 @default.
- W3046266918 hasRelatedWork W152683427 @default.
- W3046266918 hasRelatedWork W1573348766 @default.
- W3046266918 hasRelatedWork W2001310779 @default.
- W3046266918 hasRelatedWork W2005806147 @default.
- W3046266918 hasRelatedWork W2031711215 @default.
- W3046266918 hasRelatedWork W2055768033 @default.
- W3046266918 hasRelatedWork W2101529718 @default.
- W3046266918 hasRelatedWork W2121785797 @default.
- W3046266918 hasRelatedWork W2132948369 @default.
- W3046266918 hasRelatedWork W2142725333 @default.
- W3046266918 hasRelatedWork W2153033877 @default.
- W3046266918 hasRelatedWork W2353555111 @default.
- W3046266918 hasRelatedWork W2368051846 @default.
- W3046266918 hasRelatedWork W2373644461 @default.
- W3046266918 hasRelatedWork W2565126039 @default.
- W3046266918 hasRelatedWork W2903498333 @default.
- W3046266918 hasRelatedWork W2927274377 @default.
- W3046266918 hasRelatedWork W3015952669 @default.
- W3046266918 hasRelatedWork W3036091768 @default.
- W3046266918 hasRelatedWork W2108278700 @default.
- W3046266918 isParatext "false" @default.
- W3046266918 isRetracted "false" @default.
- W3046266918 magId "3046266918" @default.
- W3046266918 workType "dissertation" @default.