Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046292371> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3046292371 endingPage "26" @default.
- W3046292371 startingPage "12" @default.
- W3046292371 abstract "Algorithmic bias has the capacity to amplify and perpetuate societal bias, and presents profound ethical implications for society. Gender bias in algorithms has been identified in the context of employment advertising and recruitment tools, due to their reliance on underlying language processing and recommendation algorithms. Attempts to address such issues have involved testing learned associations, integrating concepts of fairness to machine learning, and performing more rigorous analysis of training data. Mitigating bias when algorithms are trained on textual data is particularly challenging given the complex way gender ideology is embedded in language. This paper proposes a framework for the identification of gender bias in training data for machine learning. The work draws upon gender theory and sociolinguistics to systematically indicate levels of bias in textual training data and associated neural word embedding models, thus highlighting pathways for both removing bias from training data and critically assessing its impact in the context of search and recommender systems." @default.
- W3046292371 created "2020-08-07" @default.
- W3046292371 creator A5025744412 @default.
- W3046292371 creator A5026333045 @default.
- W3046292371 creator A5053619267 @default.
- W3046292371 creator A5088316404 @default.
- W3046292371 date "2020-01-01" @default.
- W3046292371 modified "2023-10-02" @default.
- W3046292371 title "Mitigating Gender Bias in Machine Learning Data Sets" @default.
- W3046292371 cites W1490029215 @default.
- W3046292371 cites W1890106740 @default.
- W3046292371 cites W1977884881 @default.
- W3046292371 cites W1987695517 @default.
- W3046292371 cites W1991824735 @default.
- W3046292371 cites W2013143849 @default.
- W3046292371 cites W2047176536 @default.
- W3046292371 cites W2118862946 @default.
- W3046292371 cites W2165272597 @default.
- W3046292371 cites W2250879510 @default.
- W3046292371 cites W2550925836 @default.
- W3046292371 cites W2769358515 @default.
- W3046292371 cites W2791170418 @default.
- W3046292371 cites W2893425640 @default.
- W3046292371 cites W2903795157 @default.
- W3046292371 cites W2963116854 @default.
- W3046292371 cites W2963381846 @default.
- W3046292371 cites W2963526187 @default.
- W3046292371 cites W2972541020 @default.
- W3046292371 cites W3122014767 @default.
- W3046292371 cites W4236493465 @default.
- W3046292371 cites W4249223070 @default.
- W3046292371 doi "https://doi.org/10.1007/978-3-030-52485-2_2" @default.
- W3046292371 hasPublicationYear "2020" @default.
- W3046292371 type Work @default.
- W3046292371 sameAs 3046292371 @default.
- W3046292371 citedByCount "22" @default.
- W3046292371 countsByYear W30462923712021 @default.
- W3046292371 countsByYear W30462923712022 @default.
- W3046292371 countsByYear W30462923712023 @default.
- W3046292371 crossrefType "book-chapter" @default.
- W3046292371 hasAuthorship W3046292371A5025744412 @default.
- W3046292371 hasAuthorship W3046292371A5026333045 @default.
- W3046292371 hasAuthorship W3046292371A5053619267 @default.
- W3046292371 hasAuthorship W3046292371A5088316404 @default.
- W3046292371 hasBestOaLocation W30462923712 @default.
- W3046292371 hasConcept C116834253 @default.
- W3046292371 hasConcept C119857082 @default.
- W3046292371 hasConcept C151730666 @default.
- W3046292371 hasConcept C154945302 @default.
- W3046292371 hasConcept C15744967 @default.
- W3046292371 hasConcept C204321447 @default.
- W3046292371 hasConcept C2522767166 @default.
- W3046292371 hasConcept C2777462759 @default.
- W3046292371 hasConcept C2779343474 @default.
- W3046292371 hasConcept C2983427547 @default.
- W3046292371 hasConcept C41008148 @default.
- W3046292371 hasConcept C41608201 @default.
- W3046292371 hasConcept C59822182 @default.
- W3046292371 hasConcept C77805123 @default.
- W3046292371 hasConcept C86803240 @default.
- W3046292371 hasConceptScore W3046292371C116834253 @default.
- W3046292371 hasConceptScore W3046292371C119857082 @default.
- W3046292371 hasConceptScore W3046292371C151730666 @default.
- W3046292371 hasConceptScore W3046292371C154945302 @default.
- W3046292371 hasConceptScore W3046292371C15744967 @default.
- W3046292371 hasConceptScore W3046292371C204321447 @default.
- W3046292371 hasConceptScore W3046292371C2522767166 @default.
- W3046292371 hasConceptScore W3046292371C2777462759 @default.
- W3046292371 hasConceptScore W3046292371C2779343474 @default.
- W3046292371 hasConceptScore W3046292371C2983427547 @default.
- W3046292371 hasConceptScore W3046292371C41008148 @default.
- W3046292371 hasConceptScore W3046292371C41608201 @default.
- W3046292371 hasConceptScore W3046292371C59822182 @default.
- W3046292371 hasConceptScore W3046292371C77805123 @default.
- W3046292371 hasConceptScore W3046292371C86803240 @default.
- W3046292371 hasLocation W30462923711 @default.
- W3046292371 hasLocation W30462923712 @default.
- W3046292371 hasLocation W30462923713 @default.
- W3046292371 hasOpenAccess W3046292371 @default.
- W3046292371 hasPrimaryLocation W30462923711 @default.
- W3046292371 hasRelatedWork W2398825887 @default.
- W3046292371 hasRelatedWork W2567035470 @default.
- W3046292371 hasRelatedWork W2790173704 @default.
- W3046292371 hasRelatedWork W2887213206 @default.
- W3046292371 hasRelatedWork W2949267551 @default.
- W3046292371 hasRelatedWork W2961085424 @default.
- W3046292371 hasRelatedWork W4287497346 @default.
- W3046292371 hasRelatedWork W4306674287 @default.
- W3046292371 hasRelatedWork W4323060038 @default.
- W3046292371 hasRelatedWork W4224009465 @default.
- W3046292371 isParatext "false" @default.
- W3046292371 isRetracted "false" @default.
- W3046292371 magId "3046292371" @default.
- W3046292371 workType "book-chapter" @default.