Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046301294> ?p ?o ?g. }
- W3046301294 endingPage "98" @default.
- W3046301294 startingPage "88" @default.
- W3046301294 abstract "X-ray computed tomography (CT) is one of the most widely used tools in medical imaging, industrial nondestructive testing, lesion detection, and other applications. However, decreasing the projection number to lower the X-ray radiation dose usually leads to severe streak artifacts. To improve the quality of the images reconstructed from sparse-view projection data, we developed a hybrid-domain neural network (HDNet) processing for sparse-view CT (SVCT) reconstruction in this study. The HDNet decomposes the SVCT reconstruction problem into two stages and each stage focuses on one mission, which reduces the learning difficulty of the entire network. Experiments based on the simulated and clinical datasets are performed to demonstrate the performance of the proposed method. Compared with other competitive algorithms, quantitative and qualitative results show that the proposed method makes a great improvement on artifact suppression, tiny structure restoration, and contrast retention." @default.
- W3046301294 created "2020-08-07" @default.
- W3046301294 creator A5020819058 @default.
- W3046301294 creator A5026929962 @default.
- W3046301294 creator A5033344283 @default.
- W3046301294 creator A5036093909 @default.
- W3046301294 creator A5058302600 @default.
- W3046301294 creator A5064567960 @default.
- W3046301294 creator A5065509394 @default.
- W3046301294 creator A5072860706 @default.
- W3046301294 creator A5087825515 @default.
- W3046301294 date "2021-01-01" @default.
- W3046301294 modified "2023-10-16" @default.
- W3046301294 title "Hybrid-Domain Neural Network Processing for Sparse-View CT Reconstruction" @default.
- W3046301294 cites W1632571000 @default.
- W3046301294 cites W1966364402 @default.
- W3046301294 cites W1968238516 @default.
- W3046301294 cites W1972150100 @default.
- W3046301294 cites W2006458958 @default.
- W3046301294 cites W2007522854 @default.
- W3046301294 cites W2012785882 @default.
- W3046301294 cites W2019816115 @default.
- W3046301294 cites W2029109444 @default.
- W3046301294 cites W2042096957 @default.
- W3046301294 cites W2044774090 @default.
- W3046301294 cites W2069629287 @default.
- W3046301294 cites W2080310857 @default.
- W3046301294 cites W2082029374 @default.
- W3046301294 cites W2086197330 @default.
- W3046301294 cites W2096309518 @default.
- W3046301294 cites W2102353889 @default.
- W3046301294 cites W2121571320 @default.
- W3046301294 cites W2133665775 @default.
- W3046301294 cites W2141983208 @default.
- W3046301294 cites W2149400409 @default.
- W3046301294 cites W2156767721 @default.
- W3046301294 cites W2170053503 @default.
- W3046301294 cites W2171697262 @default.
- W3046301294 cites W2194775991 @default.
- W3046301294 cites W2416717155 @default.
- W3046301294 cites W2433456497 @default.
- W3046301294 cites W2508457857 @default.
- W3046301294 cites W2523713432 @default.
- W3046301294 cites W2529570353 @default.
- W3046301294 cites W2559988701 @default.
- W3046301294 cites W2567331605 @default.
- W3046301294 cites W2570202822 @default.
- W3046301294 cites W2584483805 @default.
- W3046301294 cites W2617128058 @default.
- W3046301294 cites W2746168118 @default.
- W3046301294 cites W2752731244 @default.
- W3046301294 cites W2791154958 @default.
- W3046301294 cites W2791621240 @default.
- W3046301294 cites W2793419304 @default.
- W3046301294 cites W2795777276 @default.
- W3046301294 cites W2796256498 @default.
- W3046301294 cites W2803086176 @default.
- W3046301294 cites W2884211269 @default.
- W3046301294 cites W2888052056 @default.
- W3046301294 cites W2946539594 @default.
- W3046301294 cites W2963392702 @default.
- W3046301294 cites W2963446712 @default.
- W3046301294 cites W2963891322 @default.
- W3046301294 cites W2990644664 @default.
- W3046301294 cites W3003776066 @default.
- W3046301294 cites W3018223060 @default.
- W3046301294 cites W3032125536 @default.
- W3046301294 cites W3034893515 @default.
- W3046301294 cites W3100900309 @default.
- W3046301294 cites W3103372211 @default.
- W3046301294 cites W3104324122 @default.
- W3046301294 cites W3105660070 @default.
- W3046301294 cites W3105751747 @default.
- W3046301294 doi "https://doi.org/10.1109/trpms.2020.3011413" @default.
- W3046301294 hasPublicationYear "2021" @default.
- W3046301294 type Work @default.
- W3046301294 sameAs 3046301294 @default.
- W3046301294 citedByCount "40" @default.
- W3046301294 countsByYear W30463012942020 @default.
- W3046301294 countsByYear W30463012942021 @default.
- W3046301294 countsByYear W30463012942022 @default.
- W3046301294 countsByYear W30463012942023 @default.
- W3046301294 crossrefType "journal-article" @default.
- W3046301294 hasAuthorship W3046301294A5020819058 @default.
- W3046301294 hasAuthorship W3046301294A5026929962 @default.
- W3046301294 hasAuthorship W3046301294A5033344283 @default.
- W3046301294 hasAuthorship W3046301294A5036093909 @default.
- W3046301294 hasAuthorship W3046301294A5058302600 @default.
- W3046301294 hasAuthorship W3046301294A5064567960 @default.
- W3046301294 hasAuthorship W3046301294A5065509394 @default.
- W3046301294 hasAuthorship W3046301294A5072860706 @default.
- W3046301294 hasAuthorship W3046301294A5087825515 @default.
- W3046301294 hasConcept C11413529 @default.
- W3046301294 hasConcept C115961682 @default.
- W3046301294 hasConcept C120665830 @default.
- W3046301294 hasConcept C121332964 @default.
- W3046301294 hasConcept C134306372 @default.
- W3046301294 hasConcept C141379421 @default.