Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046334328> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3046334328 abstract "Convolutional Neural Networks (CNNs) are deep learning models that are trained to automatically extract the most discriminating features directly from an input image to be used for visual classification tasks. Recently, CNNs attracted a lot of interest thanks to their effectiveness in many computer vision applications (medical imaging, video surveillance, biometrics, pattern recognition, OCR, etc.). Transfer learning is an optimization method that uses a pretrained network to speed up the training of another related task or application. This helps speed up and improve the training process on a new dataset. In this paper, we propose a new approach of handwritten word retrieval based on deep learning and transfer learning. We compared the performance between two types of extracted features based on transfer learning: from a pre-trained model and a fine-tuned network. Experiments are performed using six different CNN architectures and three similarity measures on the presegmented Bentham dataset of the ICDAR competition. The obtained results demonstrate the effectiveness of our proposed approach compared to existing methods, evaluated in this competition." @default.
- W3046334328 created "2020-08-07" @default.
- W3046334328 creator A5056964260 @default.
- W3046334328 creator A5091462208 @default.
- W3046334328 creator A5072688521 @default.
- W3046334328 date "2020-05-01" @default.
- W3046334328 modified "2023-09-25" @default.
- W3046334328 title "Word-Spotting approach using transfer deep learning of a CNN network" @default.
- W3046334328 cites W1677409904 @default.
- W3046334328 cites W1974816446 @default.
- W3046334328 cites W1993155451 @default.
- W3046334328 cites W2004305995 @default.
- W3046334328 cites W2024996570 @default.
- W3046334328 cites W2056986588 @default.
- W3046334328 cites W2062510230 @default.
- W3046334328 cites W2095962836 @default.
- W3046334328 cites W2097117768 @default.
- W3046334328 cites W2097663110 @default.
- W3046334328 cites W2100478624 @default.
- W3046334328 cites W2113687101 @default.
- W3046334328 cites W2121293259 @default.
- W3046334328 cites W2122671401 @default.
- W3046334328 cites W2151103935 @default.
- W3046334328 cites W2183341477 @default.
- W3046334328 cites W2194775991 @default.
- W3046334328 cites W2531409750 @default.
- W3046334328 cites W2576778463 @default.
- W3046334328 cites W2577926138 @default.
- W3046334328 cites W2611491007 @default.
- W3046334328 cites W2618530766 @default.
- W3046334328 cites W2787247660 @default.
- W3046334328 cites W2792001378 @default.
- W3046334328 cites W2884585870 @default.
- W3046334328 cites W2919358988 @default.
- W3046334328 cites W2961332944 @default.
- W3046334328 cites W2962971773 @default.
- W3046334328 cites W2963446712 @default.
- W3046334328 cites W2963908984 @default.
- W3046334328 cites W2964255219 @default.
- W3046334328 doi "https://doi.org/10.1109/ccssp49278.2020.9151583" @default.
- W3046334328 hasPublicationYear "2020" @default.
- W3046334328 type Work @default.
- W3046334328 sameAs 3046334328 @default.
- W3046334328 citedByCount "4" @default.
- W3046334328 countsByYear W30463343282021 @default.
- W3046334328 countsByYear W30463343282022 @default.
- W3046334328 countsByYear W30463343282023 @default.
- W3046334328 crossrefType "proceedings-article" @default.
- W3046334328 hasAuthorship W3046334328A5056964260 @default.
- W3046334328 hasAuthorship W3046334328A5072688521 @default.
- W3046334328 hasAuthorship W3046334328A5091462208 @default.
- W3046334328 hasConcept C103278499 @default.
- W3046334328 hasConcept C108583219 @default.
- W3046334328 hasConcept C115961682 @default.
- W3046334328 hasConcept C119857082 @default.
- W3046334328 hasConcept C150899416 @default.
- W3046334328 hasConcept C153180895 @default.
- W3046334328 hasConcept C154945302 @default.
- W3046334328 hasConcept C2779506182 @default.
- W3046334328 hasConcept C2781213101 @default.
- W3046334328 hasConcept C28490314 @default.
- W3046334328 hasConcept C41008148 @default.
- W3046334328 hasConcept C81363708 @default.
- W3046334328 hasConceptScore W3046334328C103278499 @default.
- W3046334328 hasConceptScore W3046334328C108583219 @default.
- W3046334328 hasConceptScore W3046334328C115961682 @default.
- W3046334328 hasConceptScore W3046334328C119857082 @default.
- W3046334328 hasConceptScore W3046334328C150899416 @default.
- W3046334328 hasConceptScore W3046334328C153180895 @default.
- W3046334328 hasConceptScore W3046334328C154945302 @default.
- W3046334328 hasConceptScore W3046334328C2779506182 @default.
- W3046334328 hasConceptScore W3046334328C2781213101 @default.
- W3046334328 hasConceptScore W3046334328C28490314 @default.
- W3046334328 hasConceptScore W3046334328C41008148 @default.
- W3046334328 hasConceptScore W3046334328C81363708 @default.
- W3046334328 hasLocation W30463343281 @default.
- W3046334328 hasOpenAccess W3046334328 @default.
- W3046334328 hasPrimaryLocation W30463343281 @default.
- W3046334328 hasRelatedWork W2996856019 @default.
- W3046334328 hasRelatedWork W3018421652 @default.
- W3046334328 hasRelatedWork W3021430260 @default.
- W3046334328 hasRelatedWork W3091976719 @default.
- W3046334328 hasRelatedWork W3192840557 @default.
- W3046334328 hasRelatedWork W4220996320 @default.
- W3046334328 hasRelatedWork W4285149559 @default.
- W3046334328 hasRelatedWork W4312200629 @default.
- W3046334328 hasRelatedWork W4382286161 @default.
- W3046334328 hasRelatedWork W4386213806 @default.
- W3046334328 isParatext "false" @default.
- W3046334328 isRetracted "false" @default.
- W3046334328 magId "3046334328" @default.
- W3046334328 workType "article" @default.