Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046348228> ?p ?o ?g. }
- W3046348228 endingPage "119802" @default.
- W3046348228 startingPage "119802" @default.
- W3046348228 abstract "Jarosite is one of the critical minerals that regulates acidity and contaminants in acid-sulfate environments and its Fe isotope composition may shed light on its formation, transformation and recrystallization over time. Interpretation of its Fe isotope composition requires understanding the equilibrium Fe isotope fractionation factor between jarosite and other Fe-bearing minerals and aqueous species. Here we explore Fe isotope exchange and fractionation between jarosite and Fe(II)(aq) under acidic conditions using the three-isotope method (Fe-54-Fe-56-Fe-57). A reversal-approach to equilibrium was applied by reacting synthetic jarosite and natural natrojarosite with two Fe-57-enriched Fe(II)(aq) solutions that had initial Fe-56/Fe-54 ratios above and below the predicted equilibrium value. No change in dissolved Fe(II) concentrations were observed with time but the Fe-57/Fe-56 ratio of Fe(II)(aq) decreased towards the system mass balance, suggesting a high degree of equilibration of the fluid with the solid phase despite no net Fe(II) sorption (within error). There is a negative relationship between pH and Fe isotope exchange, with Fe isotope exchange proceeding as pH decreases. This may be explained by dissolution of hydronium jarosite and reprecipitation of natrojarosite, coupled H3O+-Na+ exchange, or jarosite decomposition, although no Fe-oxyhydroxide phases were identified from XRD. Calculation of the amount of Fe atoms in jarosite that exchanged with Fe(II)(aq) indicates that jarosite recrystallization was limited to a few percent. When the initial delta Fe-56 value of Fe(II)(aq) was greater than the presumed equilibrium value its isotopic value substantially decreased with time whereas the delta Fe-56 values of Fe(II)(aq) increased with time when it had an initial value below the suspected equilibrium composition. In each case, the isotopic composition of Fe(II)(aq) approached similar values, providing a high degree of confidence of an attainment of equilibrium. Calculation of the Fe(II)(aq)-jarosite and Fe(II)(aq)-natrojarosite equilibrium fractionation factors at 22 degrees C were -2.26 parts per thousand (+/- 0.27 parts per thousand, 2 sigma) and - 2.19 parts per thousand (+/- 0.18 parts per thousand, 2 sigma), respectively. This indicates that during jarosite recrystallization in the presence of Fe(II), jarosite is expected to become isotopically heavier as lighter isotopes are fractionated into Fe(II) These values differ from the estimated fractionation factors derived from NRIXS spectroscopy and molecular modeling. The differences between experiments and theory may reflect surface exchange, which was likely in our study, versus predicted bulk thermodynamic properties of the mineral." @default.
- W3046348228 created "2020-08-07" @default.
- W3046348228 creator A5013085316 @default.
- W3046348228 creator A5042814290 @default.
- W3046348228 creator A5066161944 @default.
- W3046348228 date "2020-11-01" @default.
- W3046348228 modified "2023-09-24" @default.
- W3046348228 title "Iron isotope exchange and fractionation between jarosite and aqueous Fe(II)" @default.
- W3046348228 cites W1644134765 @default.
- W3046348228 cites W1967251929 @default.
- W3046348228 cites W1976287912 @default.
- W3046348228 cites W1978052340 @default.
- W3046348228 cites W1982394387 @default.
- W3046348228 cites W1987573245 @default.
- W3046348228 cites W1997124209 @default.
- W3046348228 cites W2001429541 @default.
- W3046348228 cites W2001890209 @default.
- W3046348228 cites W2004100032 @default.
- W3046348228 cites W2009728826 @default.
- W3046348228 cites W2015269162 @default.
- W3046348228 cites W2016260972 @default.
- W3046348228 cites W2020579560 @default.
- W3046348228 cites W2027333732 @default.
- W3046348228 cites W2028044783 @default.
- W3046348228 cites W2029349145 @default.
- W3046348228 cites W2029493649 @default.
- W3046348228 cites W2031665411 @default.
- W3046348228 cites W2032863523 @default.
- W3046348228 cites W2035148183 @default.
- W3046348228 cites W2037496025 @default.
- W3046348228 cites W2042173708 @default.
- W3046348228 cites W2042341224 @default.
- W3046348228 cites W2042760382 @default.
- W3046348228 cites W2052539979 @default.
- W3046348228 cites W2065051877 @default.
- W3046348228 cites W2066340240 @default.
- W3046348228 cites W2072135917 @default.
- W3046348228 cites W2072563602 @default.
- W3046348228 cites W2074797379 @default.
- W3046348228 cites W2085805428 @default.
- W3046348228 cites W2089991605 @default.
- W3046348228 cites W2090892825 @default.
- W3046348228 cites W2091913250 @default.
- W3046348228 cites W2092451240 @default.
- W3046348228 cites W2098705248 @default.
- W3046348228 cites W2100242299 @default.
- W3046348228 cites W2107297476 @default.
- W3046348228 cites W2108338917 @default.
- W3046348228 cites W2114163536 @default.
- W3046348228 cites W2119811890 @default.
- W3046348228 cites W2125787927 @default.
- W3046348228 cites W2131178158 @default.
- W3046348228 cites W2144909731 @default.
- W3046348228 cites W2146236300 @default.
- W3046348228 cites W2147037889 @default.
- W3046348228 cites W2149227897 @default.
- W3046348228 cites W2150361164 @default.
- W3046348228 cites W2153595958 @default.
- W3046348228 cites W2155496078 @default.
- W3046348228 cites W2165902206 @default.
- W3046348228 cites W2170214641 @default.
- W3046348228 cites W2170887597 @default.
- W3046348228 cites W2194114636 @default.
- W3046348228 cites W2415592772 @default.
- W3046348228 cites W2549174977 @default.
- W3046348228 cites W2585594208 @default.
- W3046348228 cites W2585925744 @default.
- W3046348228 cites W2590454800 @default.
- W3046348228 cites W2600871520 @default.
- W3046348228 cites W2778105173 @default.
- W3046348228 cites W2794351776 @default.
- W3046348228 cites W2899547361 @default.
- W3046348228 cites W2914998203 @default.
- W3046348228 cites W2992863242 @default.
- W3046348228 cites W3015014706 @default.
- W3046348228 doi "https://doi.org/10.1016/j.chemgeo.2020.119802" @default.
- W3046348228 hasPublicationYear "2020" @default.
- W3046348228 type Work @default.
- W3046348228 sameAs 3046348228 @default.
- W3046348228 citedByCount "1" @default.
- W3046348228 countsByYear W30463482282022 @default.
- W3046348228 crossrefType "journal-article" @default.
- W3046348228 hasAuthorship W3046348228A5013085316 @default.
- W3046348228 hasAuthorship W3046348228A5042814290 @default.
- W3046348228 hasAuthorship W3046348228A5066161944 @default.
- W3046348228 hasConcept C145148216 @default.
- W3046348228 hasConcept C147789679 @default.
- W3046348228 hasConcept C178790620 @default.
- W3046348228 hasConcept C179104552 @default.
- W3046348228 hasConcept C184651966 @default.
- W3046348228 hasConcept C185592680 @default.
- W3046348228 hasConcept C195511166 @default.
- W3046348228 hasConcept C2775929177 @default.
- W3046348228 hasConcept C2777325023 @default.
- W3046348228 hasConcept C2778343803 @default.
- W3046348228 hasConcept C2779334269 @default.
- W3046348228 hasConcept C43617362 @default.
- W3046348228 hasConcept C88380143 @default.