Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046378082> ?p ?o ?g. }
- W3046378082 abstract "Chimeric virus-like particles (cVLPs) are protein-based nanostructures applied as investigational vaccines against infectious diseases, cancer, and immunological disorders. Low solubility of cVLP vaccine candidates is a challenge that can prevent development of these very substances. Solubility of cVLPs is typically assessed empirically, leading to high time and material requirements. Prediction of cVLP solubility in silico can aid in reducing this effort. Protein aggregation by hydrophobic interaction is an important factor driving protein insolubility. In this article, a recently developed soft ensemble vote classifier (sEVC) for the prediction of cVLP solubility was used based on 91 literature amino acid hydrophobicity scales. Optimization algorithms were developed to boost model performance, and the model was redesigned as a regression tool for ammonium sulfate concentration required for cVLP precipitation. The present dataset consists of 568 cVLPs, created by insertion of 71 different peptide sequences using eight different insertion strategies. Two optimization algorithms were developed that I) modified the sEVC with regard to systematic misclassification based on the different insertion strategies, and II) modified the amino acid hydrophobicity scale tables to improve classification. The second algorithm was additionally used to synthesize scales from random vectors. Compared to the unmodified model, Matthew’s Correlation Coefficient (MCC) and accuracy of the test set predictions could be elevated from .63 and .81 to .77 and .88, respectively, for the best models. This improved performance compared to literature scales was suggested to be due to a decreased correlation between synthesized scales. In these, tryptophan was identified as the most hydrophobic amino acid, i.e. the amino acid most problematic for cVLP solubility, supported by previous literature findings. As a case study, the sEVC was redesigned as a regression tool and applied to determine ammonium sulfate concentrations for the precipitation of cVLPs. This was evaluated with a small dataset of ten cVLPs resulting in an R² of .69. In summary, we propose optimization algorithms that improve sEVC model performance for the prediction of cVLP solubility, allow for the synthesis of amino acid scale tables, and further evaluate the sEVC as regression tool to predict cVLP-precipitating ammonium sulfate concentrations." @default.
- W3046378082 created "2020-08-07" @default.
- W3046378082 creator A5027613252 @default.
- W3046378082 creator A5074124976 @default.
- W3046378082 creator A5081439035 @default.
- W3046378082 date "2020-07-31" @default.
- W3046378082 modified "2023-09-25" @default.
- W3046378082 title "Optimization of a Soft Ensemble Vote Classifier for the Prediction of Chimeric Virus-Like Particle Solubility and Other Biophysical Properties" @default.
- W3046378082 cites W117080856 @default.
- W3046378082 cites W1588000118 @default.
- W3046378082 cites W1809873675 @default.
- W3046378082 cites W1931979268 @default.
- W3046378082 cites W1965099927 @default.
- W3046378082 cites W1975304761 @default.
- W3046378082 cites W1978089216 @default.
- W3046378082 cites W1979764309 @default.
- W3046378082 cites W2017526625 @default.
- W3046378082 cites W2018436199 @default.
- W3046378082 cites W2033389023 @default.
- W3046378082 cites W2043338013 @default.
- W3046378082 cites W2046182783 @default.
- W3046378082 cites W2061734833 @default.
- W3046378082 cites W2092706417 @default.
- W3046378082 cites W2100657891 @default.
- W3046378082 cites W2119246926 @default.
- W3046378082 cites W2133458779 @default.
- W3046378082 cites W2144112248 @default.
- W3046378082 cites W2148483761 @default.
- W3046378082 cites W2148694924 @default.
- W3046378082 cites W2151900904 @default.
- W3046378082 cites W2152986015 @default.
- W3046378082 cites W2156955619 @default.
- W3046378082 cites W2164511624 @default.
- W3046378082 cites W2169657464 @default.
- W3046378082 cites W2256424452 @default.
- W3046378082 cites W2299461258 @default.
- W3046378082 cites W2314111724 @default.
- W3046378082 cites W2334437992 @default.
- W3046378082 cites W2463717668 @default.
- W3046378082 cites W2620185010 @default.
- W3046378082 cites W2767738731 @default.
- W3046378082 cites W2914780528 @default.
- W3046378082 cites W2930085947 @default.
- W3046378082 cites W3022835497 @default.
- W3046378082 cites W3027429408 @default.
- W3046378082 cites W4244736178 @default.
- W3046378082 doi "https://doi.org/10.3389/fbioe.2020.00881" @default.
- W3046378082 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7411134" @default.
- W3046378082 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32850736" @default.
- W3046378082 hasPublicationYear "2020" @default.
- W3046378082 type Work @default.
- W3046378082 sameAs 3046378082 @default.
- W3046378082 citedByCount "2" @default.
- W3046378082 countsByYear W30463780822021 @default.
- W3046378082 countsByYear W30463780822023 @default.
- W3046378082 crossrefType "journal-article" @default.
- W3046378082 hasAuthorship W3046378082A5027613252 @default.
- W3046378082 hasAuthorship W3046378082A5074124976 @default.
- W3046378082 hasAuthorship W3046378082A5081439035 @default.
- W3046378082 hasBestOaLocation W30463780821 @default.
- W3046378082 hasConcept C104317684 @default.
- W3046378082 hasConcept C105795698 @default.
- W3046378082 hasConcept C119857082 @default.
- W3046378082 hasConcept C154945302 @default.
- W3046378082 hasConcept C155574463 @default.
- W3046378082 hasConcept C178790620 @default.
- W3046378082 hasConcept C185592680 @default.
- W3046378082 hasConcept C186060115 @default.
- W3046378082 hasConcept C2775905019 @default.
- W3046378082 hasConcept C2781059462 @default.
- W3046378082 hasConcept C33923547 @default.
- W3046378082 hasConcept C41008148 @default.
- W3046378082 hasConcept C55493867 @default.
- W3046378082 hasConcept C86803240 @default.
- W3046378082 hasConcept C95623464 @default.
- W3046378082 hasConceptScore W3046378082C104317684 @default.
- W3046378082 hasConceptScore W3046378082C105795698 @default.
- W3046378082 hasConceptScore W3046378082C119857082 @default.
- W3046378082 hasConceptScore W3046378082C154945302 @default.
- W3046378082 hasConceptScore W3046378082C155574463 @default.
- W3046378082 hasConceptScore W3046378082C178790620 @default.
- W3046378082 hasConceptScore W3046378082C185592680 @default.
- W3046378082 hasConceptScore W3046378082C186060115 @default.
- W3046378082 hasConceptScore W3046378082C2775905019 @default.
- W3046378082 hasConceptScore W3046378082C2781059462 @default.
- W3046378082 hasConceptScore W3046378082C33923547 @default.
- W3046378082 hasConceptScore W3046378082C41008148 @default.
- W3046378082 hasConceptScore W3046378082C55493867 @default.
- W3046378082 hasConceptScore W3046378082C86803240 @default.
- W3046378082 hasConceptScore W3046378082C95623464 @default.
- W3046378082 hasFunder F4320311048 @default.
- W3046378082 hasFunder F4320320879 @default.
- W3046378082 hasLocation W30463780821 @default.
- W3046378082 hasLocation W30463780822 @default.
- W3046378082 hasLocation W30463780823 @default.
- W3046378082 hasLocation W30463780824 @default.
- W3046378082 hasOpenAccess W3046378082 @default.
- W3046378082 hasPrimaryLocation W30463780821 @default.
- W3046378082 hasRelatedWork W2556319748 @default.
- W3046378082 hasRelatedWork W2748952813 @default.