Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046496723> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3046496723 abstract "The Hamming neural network is an effective tool for solving the problems of recognition and classification of discrete objects whose components are encoded with the binary bipolar alphabet, and the difference between the number of identical bipolar components of the compared objects (vectors images) and the Hamming distance between them (Hamming distance is the number of mismatched bits in the binary vectors being compared) is used as the objects proximity measures. However, the Hamming neural network cannot be used to solve these problems in case the components of the compared objects (vectors) are encoded with the binary alphabet. It also cannot be used to evaluate the affinity (proximity) of objects (binary vectors) with Jaccard, Sokal and Michener, Kulzinsky functions, etc. In this regard, a generalized Hamming neural network architecture has been developed. It consists of two main blocks, which can vary being relatively independent on each other. The first block, consisting of one layer of neurons, calculates the proximity measures of the input image and the reference ones stored in the neuron relations weights of this block. Unlike the Hamming neural network, this block can calculate various proximity measures and signals about the magnitude of these proximity measures from the output of the first block neurons which are followed to the inputs of the second block elements. In the Hamming neural network, the Maxnet neural network is used as the second block, which gives out one maximum signal from the outputs of the first block neurons. If the inputs of the Maxnet network receive not only one but several identical maximum signals, then the second block, and, consequently, the Hamming network, cannot recognize the input vector, which is at the same minimum Hamming distance from two or more reference images stored in the first block. The proposed generalized architecture of the Hamming neural network allows using neural networks instead of the Maxnet network, which can give out not only one but also several identical maximum signals. This allows to eliminate the indicated drawback of the Hamming neural network and to expand the application area of discrete neural networks for solving recognition and classification problems using proximity functions for discrete objects with binary coding of their components." @default.
- W3046496723 created "2020-08-07" @default.
- W3046496723 creator A5012147556 @default.
- W3046496723 creator A5040341267 @default.
- W3046496723 creator A5049772421 @default.
- W3046496723 date "2020-06-01" @default.
- W3046496723 modified "2023-10-01" @default.
- W3046496723 title "Neural networks for determining affinity functions" @default.
- W3046496723 cites W1608292140 @default.
- W3046496723 doi "https://doi.org/10.1109/hora49412.2020.9152830" @default.
- W3046496723 hasPublicationYear "2020" @default.
- W3046496723 type Work @default.
- W3046496723 sameAs 3046496723 @default.
- W3046496723 citedByCount "2" @default.
- W3046496723 countsByYear W30464967232021 @default.
- W3046496723 countsByYear W30464967232022 @default.
- W3046496723 crossrefType "proceedings-article" @default.
- W3046496723 hasAuthorship W3046496723A5012147556 @default.
- W3046496723 hasAuthorship W3046496723A5040341267 @default.
- W3046496723 hasAuthorship W3046496723A5049772421 @default.
- W3046496723 hasConcept C112932734 @default.
- W3046496723 hasConcept C11413529 @default.
- W3046496723 hasConcept C114614502 @default.
- W3046496723 hasConcept C153180895 @default.
- W3046496723 hasConcept C154945302 @default.
- W3046496723 hasConcept C157125643 @default.
- W3046496723 hasConcept C166530166 @default.
- W3046496723 hasConcept C193319292 @default.
- W3046496723 hasConcept C203519979 @default.
- W3046496723 hasConcept C2777210771 @default.
- W3046496723 hasConcept C29696283 @default.
- W3046496723 hasConcept C33923547 @default.
- W3046496723 hasConcept C41008148 @default.
- W3046496723 hasConcept C48372109 @default.
- W3046496723 hasConcept C50644808 @default.
- W3046496723 hasConcept C57273362 @default.
- W3046496723 hasConcept C63435697 @default.
- W3046496723 hasConcept C73150493 @default.
- W3046496723 hasConcept C94375191 @default.
- W3046496723 hasConceptScore W3046496723C112932734 @default.
- W3046496723 hasConceptScore W3046496723C11413529 @default.
- W3046496723 hasConceptScore W3046496723C114614502 @default.
- W3046496723 hasConceptScore W3046496723C153180895 @default.
- W3046496723 hasConceptScore W3046496723C154945302 @default.
- W3046496723 hasConceptScore W3046496723C157125643 @default.
- W3046496723 hasConceptScore W3046496723C166530166 @default.
- W3046496723 hasConceptScore W3046496723C193319292 @default.
- W3046496723 hasConceptScore W3046496723C203519979 @default.
- W3046496723 hasConceptScore W3046496723C2777210771 @default.
- W3046496723 hasConceptScore W3046496723C29696283 @default.
- W3046496723 hasConceptScore W3046496723C33923547 @default.
- W3046496723 hasConceptScore W3046496723C41008148 @default.
- W3046496723 hasConceptScore W3046496723C48372109 @default.
- W3046496723 hasConceptScore W3046496723C50644808 @default.
- W3046496723 hasConceptScore W3046496723C57273362 @default.
- W3046496723 hasConceptScore W3046496723C63435697 @default.
- W3046496723 hasConceptScore W3046496723C73150493 @default.
- W3046496723 hasConceptScore W3046496723C94375191 @default.
- W3046496723 hasLocation W30464967231 @default.
- W3046496723 hasOpenAccess W3046496723 @default.
- W3046496723 hasPrimaryLocation W30464967231 @default.
- W3046496723 hasRelatedWork W11880096 @default.
- W3046496723 hasRelatedWork W12325957 @default.
- W3046496723 hasRelatedWork W12865176 @default.
- W3046496723 hasRelatedWork W3009108 @default.
- W3046496723 hasRelatedWork W4919037 @default.
- W3046496723 hasRelatedWork W5731987 @default.
- W3046496723 hasRelatedWork W699561 @default.
- W3046496723 hasRelatedWork W7623748 @default.
- W3046496723 hasRelatedWork W8512064 @default.
- W3046496723 hasRelatedWork W8711903 @default.
- W3046496723 isParatext "false" @default.
- W3046496723 isRetracted "false" @default.
- W3046496723 magId "3046496723" @default.
- W3046496723 workType "article" @default.