Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046507834> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3046507834 endingPage "350" @default.
- W3046507834 startingPage "345" @default.
- W3046507834 abstract "Purpose of review Current methods for thyroid nodule risk stratification are subjective, and artificial intelligence algorithms have been used to overcome this shortcoming. In this review, we summarize recent developments in the application of artificial intelligence algorithms for estimating the risks of malignancy in a thyroid nodule. Recent findings Artificial intelligence have been used to predict malignancy in thyroid nodules using ultrasound images, cytopathology images, and molecular markers. Recent clinical trials have shown that artificial intelligence model's performance matched that of experienced radiologists and pathologists. Explainable artificial intelligence models are being developed to avoid the black box problem. Risk stratification algorithms using artificial intelligence for thyroid nodules are now commercially available in many countries. Summary Artificial intelligence models could become a useful tool in a thyroidolgist's armamentarium as a decision support tool. Increased adoption of this emerging technology will depend upon increased awareness of the potential benefits and pitfalls in using artificial intelligence." @default.
- W3046507834 created "2020-08-07" @default.
- W3046507834 creator A5001081885 @default.
- W3046507834 creator A5054909444 @default.
- W3046507834 creator A5086836227 @default.
- W3046507834 date "2020-07-28" @default.
- W3046507834 modified "2023-10-14" @default.
- W3046507834 title "Use of artificial intelligence and machine learning for estimating malignancy risk of thyroid nodules" @default.
- W3046507834 cites W1941746056 @default.
- W3046507834 cites W1974077717 @default.
- W3046507834 cites W2083381990 @default.
- W3046507834 cites W2093010205 @default.
- W3046507834 cites W2145150141 @default.
- W3046507834 cites W2294839422 @default.
- W3046507834 cites W2884160805 @default.
- W3046507834 cites W2896418735 @default.
- W3046507834 cites W2900078105 @default.
- W3046507834 cites W2902363929 @default.
- W3046507834 cites W2907067813 @default.
- W3046507834 cites W2910443141 @default.
- W3046507834 cites W2928011770 @default.
- W3046507834 cites W2935513430 @default.
- W3046507834 cites W2949316186 @default.
- W3046507834 cites W2972621596 @default.
- W3046507834 cites W2973926885 @default.
- W3046507834 cites W2990818770 @default.
- W3046507834 cites W2992015086 @default.
- W3046507834 cites W2999744105 @default.
- W3046507834 cites W3004427117 @default.
- W3046507834 cites W3004586130 @default.
- W3046507834 cites W3005273854 @default.
- W3046507834 cites W3006647366 @default.
- W3046507834 cites W3015027340 @default.
- W3046507834 cites W4312663220 @default.
- W3046507834 doi "https://doi.org/10.1097/med.0000000000000557" @default.
- W3046507834 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32740044" @default.
- W3046507834 hasPublicationYear "2020" @default.
- W3046507834 type Work @default.
- W3046507834 sameAs 3046507834 @default.
- W3046507834 citedByCount "14" @default.
- W3046507834 countsByYear W30465078342021 @default.
- W3046507834 countsByYear W30465078342022 @default.
- W3046507834 countsByYear W30465078342023 @default.
- W3046507834 crossrefType "journal-article" @default.
- W3046507834 hasAuthorship W3046507834A5001081885 @default.
- W3046507834 hasAuthorship W3046507834A5054909444 @default.
- W3046507834 hasAuthorship W3046507834A5086836227 @default.
- W3046507834 hasConcept C119857082 @default.
- W3046507834 hasConcept C126322002 @default.
- W3046507834 hasConcept C142724271 @default.
- W3046507834 hasConcept C151730666 @default.
- W3046507834 hasConcept C154945302 @default.
- W3046507834 hasConcept C2776731575 @default.
- W3046507834 hasConcept C2779022025 @default.
- W3046507834 hasConcept C2779399171 @default.
- W3046507834 hasConcept C3020404979 @default.
- W3046507834 hasConcept C41008148 @default.
- W3046507834 hasConcept C71924100 @default.
- W3046507834 hasConcept C86803240 @default.
- W3046507834 hasConceptScore W3046507834C119857082 @default.
- W3046507834 hasConceptScore W3046507834C126322002 @default.
- W3046507834 hasConceptScore W3046507834C142724271 @default.
- W3046507834 hasConceptScore W3046507834C151730666 @default.
- W3046507834 hasConceptScore W3046507834C154945302 @default.
- W3046507834 hasConceptScore W3046507834C2776731575 @default.
- W3046507834 hasConceptScore W3046507834C2779022025 @default.
- W3046507834 hasConceptScore W3046507834C2779399171 @default.
- W3046507834 hasConceptScore W3046507834C3020404979 @default.
- W3046507834 hasConceptScore W3046507834C41008148 @default.
- W3046507834 hasConceptScore W3046507834C71924100 @default.
- W3046507834 hasConceptScore W3046507834C86803240 @default.
- W3046507834 hasIssue "5" @default.
- W3046507834 hasLocation W30465078341 @default.
- W3046507834 hasOpenAccess W3046507834 @default.
- W3046507834 hasPrimaryLocation W30465078341 @default.
- W3046507834 hasRelatedWork W1857172647 @default.
- W3046507834 hasRelatedWork W2331456122 @default.
- W3046507834 hasRelatedWork W2567150489 @default.
- W3046507834 hasRelatedWork W2895036662 @default.
- W3046507834 hasRelatedWork W2899112730 @default.
- W3046507834 hasRelatedWork W3044222562 @default.
- W3046507834 hasRelatedWork W3105624042 @default.
- W3046507834 hasRelatedWork W38870630 @default.
- W3046507834 hasRelatedWork W4225386859 @default.
- W3046507834 hasRelatedWork W4297808785 @default.
- W3046507834 hasVolume "27" @default.
- W3046507834 isParatext "false" @default.
- W3046507834 isRetracted "false" @default.
- W3046507834 magId "3046507834" @default.
- W3046507834 workType "article" @default.