Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046520725> ?p ?o ?g. }
- W3046520725 endingPage "11" @default.
- W3046520725 startingPage "1" @default.
- W3046520725 abstract "Electrical resistance tomography (ERT) is an effective visualization and analysis tool for multiphase flow process through an array of boundary electrodes. However, the existing deep learning network for the image reconstruction of ERT with the sparse information flow and gradient flow is not well trained, and the accuracy of reconstructed images cannot meet the increasing demands. In order to solve this problem and improve the accuracy of the reconstructed image, a new imaging algorithm that consists of initial imaging module, feature extraction module, image reconstruction module, and residual module is proposed based on dense connections. Four dense blocks with dense connections are adopted to fully fuse the features between feature extraction module and image reconstruction module, which mitigate the problems of information vanishing of the higher layer and gradient vanishing of the lower layer. From the perspective of information flow and gradient flow, why dense connections have a good performance of promoting a deep network training is explained, which provides a theoretical support for the application and development of dense connections. Compared with the Tikhonov regularization method, total variation method, and the networks without dense connections using extensive numerical simulation and experiment results, the imaging accuracy of the new proposed algorithm is improved. Besides, for the ERT cases considered here, the spatial resolution of V Dense Net (VD-Net) (3.12%-4%) is better than that of the traditional image reconstruction (10%-15%)." @default.
- W3046520725 created "2020-08-07" @default.
- W3046520725 creator A5068911557 @default.
- W3046520725 creator A5091500705 @default.
- W3046520725 date "2021-01-01" @default.
- W3046520725 modified "2023-10-18" @default.
- W3046520725 title "Electrical Resistance Tomography Image Reconstruction With Densely Connected Convolutional Neural Network" @default.
- W3046520725 cites W1970341134 @default.
- W3046520725 cites W198508004 @default.
- W3046520725 cites W1986024064 @default.
- W3046520725 cites W1988115241 @default.
- W3046520725 cites W1991540127 @default.
- W3046520725 cites W2005681075 @default.
- W3046520725 cites W2013940486 @default.
- W3046520725 cites W2015552167 @default.
- W3046520725 cites W2027197837 @default.
- W3046520725 cites W2034164490 @default.
- W3046520725 cites W2045101645 @default.
- W3046520725 cites W2049772201 @default.
- W3046520725 cites W2106050534 @default.
- W3046520725 cites W2120625383 @default.
- W3046520725 cites W2151514667 @default.
- W3046520725 cites W2194775991 @default.
- W3046520725 cites W2331143823 @default.
- W3046520725 cites W2333414777 @default.
- W3046520725 cites W2345901332 @default.
- W3046520725 cites W2530307286 @default.
- W3046520725 cites W2549139847 @default.
- W3046520725 cites W2564574066 @default.
- W3046520725 cites W2608090923 @default.
- W3046520725 cites W2624329447 @default.
- W3046520725 cites W2739069735 @default.
- W3046520725 cites W2746167419 @default.
- W3046520725 cites W2767248316 @default.
- W3046520725 cites W2795198316 @default.
- W3046520725 cites W2803595004 @default.
- W3046520725 cites W2804478515 @default.
- W3046520725 cites W2884664034 @default.
- W3046520725 cites W2896048271 @default.
- W3046520725 cites W2896344704 @default.
- W3046520725 cites W2907759749 @default.
- W3046520725 cites W2911065777 @default.
- W3046520725 cites W2911287241 @default.
- W3046520725 cites W2943059793 @default.
- W3046520725 cites W2962737770 @default.
- W3046520725 cites W2963446712 @default.
- W3046520725 cites W2964101377 @default.
- W3046520725 cites W2996058900 @default.
- W3046520725 cites W3006265495 @default.
- W3046520725 cites W3104219848 @default.
- W3046520725 doi "https://doi.org/10.1109/tim.2020.3013056" @default.
- W3046520725 hasPublicationYear "2021" @default.
- W3046520725 type Work @default.
- W3046520725 sameAs 3046520725 @default.
- W3046520725 citedByCount "26" @default.
- W3046520725 countsByYear W30465207252021 @default.
- W3046520725 countsByYear W30465207252022 @default.
- W3046520725 countsByYear W30465207252023 @default.
- W3046520725 crossrefType "journal-article" @default.
- W3046520725 hasAuthorship W3046520725A5068911557 @default.
- W3046520725 hasAuthorship W3046520725A5091500705 @default.
- W3046520725 hasConcept C11413529 @default.
- W3046520725 hasConcept C119599485 @default.
- W3046520725 hasConcept C127413603 @default.
- W3046520725 hasConcept C134306372 @default.
- W3046520725 hasConcept C135252773 @default.
- W3046520725 hasConcept C141353440 @default.
- W3046520725 hasConcept C141379421 @default.
- W3046520725 hasConcept C152442038 @default.
- W3046520725 hasConcept C153180895 @default.
- W3046520725 hasConcept C154945302 @default.
- W3046520725 hasConcept C155512373 @default.
- W3046520725 hasConcept C205372480 @default.
- W3046520725 hasConcept C31972630 @default.
- W3046520725 hasConcept C33923547 @default.
- W3046520725 hasConcept C41008148 @default.
- W3046520725 hasConcept C52622490 @default.
- W3046520725 hasConcept C81363708 @default.
- W3046520725 hasConceptScore W3046520725C11413529 @default.
- W3046520725 hasConceptScore W3046520725C119599485 @default.
- W3046520725 hasConceptScore W3046520725C127413603 @default.
- W3046520725 hasConceptScore W3046520725C134306372 @default.
- W3046520725 hasConceptScore W3046520725C135252773 @default.
- W3046520725 hasConceptScore W3046520725C141353440 @default.
- W3046520725 hasConceptScore W3046520725C141379421 @default.
- W3046520725 hasConceptScore W3046520725C152442038 @default.
- W3046520725 hasConceptScore W3046520725C153180895 @default.
- W3046520725 hasConceptScore W3046520725C154945302 @default.
- W3046520725 hasConceptScore W3046520725C155512373 @default.
- W3046520725 hasConceptScore W3046520725C205372480 @default.
- W3046520725 hasConceptScore W3046520725C31972630 @default.
- W3046520725 hasConceptScore W3046520725C33923547 @default.
- W3046520725 hasConceptScore W3046520725C41008148 @default.
- W3046520725 hasConceptScore W3046520725C52622490 @default.
- W3046520725 hasConceptScore W3046520725C81363708 @default.
- W3046520725 hasFunder F4320321001 @default.
- W3046520725 hasFunder F4320323993 @default.
- W3046520725 hasLocation W30465207251 @default.