Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046535017> ?p ?o ?g. }
- W3046535017 abstract "Background: Since neurofibromatosis type I (NF1) is a cancer predisposition disease, it is important to distinguish between benign and malignant lesions, especially in the craniofacial area. Purpose: The purpose of this study is to improve effectiveness in the diagnostic performance in discriminating malignant from benign craniofacial lesions based on computed tomography (CT) using a Keras-based machine learning model. Methods: The Keras-based machine learning technique, a neural network package in the Python language, was used to train the diagnostic model on CT datasets. Fifty NF1 patients with benign craniofacial neurofibromas and 6 NF1 patients with malignant peripheral nerve sheath tumors (MPNSTs) were selected as the training set. Three validation cohorts were used: validation cohort 1 (random selection of 90% of the patients in the training cohort), validation cohort 2 (an independent cohort of 9 NF1 patients with benign craniofacial neurofibromas and 11 NF1 patients with MPNST), and validation cohort 3 (8 NF1 patients with MPNST, not restricted to the craniofacial area). Sensitivity and specificity were tested using validation cohorts 1 and 2, and generalizability was evaluated using validation cohort 3. Results: A total of 59 NF1 patients with benign neurofibroma and 23 NF1 patients with MPNST were included. A Keras-based machine learning model was successfully established using the training cohort. The accuracy was 96.99% and 100% in validation cohorts 1 and 2, respectively, discriminating NF1-related benign and malignant craniofacial lesions. However, the accuracy of this model was significantly reduced to 51.72% in the identification of MPNSTs in different body regions. Conclusion: The Keras-based machine learning technique showed the potential of robust diagnostic performance in the differentiation of craniofacial MPNSTs and benign neurofibromas in NF1 patients using CT images. However, the model has limited generalizability when applyied to other body areas. With more clinical data accumulating in the model, this system may support clinical doctors in the primary screening of true MPNSTs from benign lesions in NF1 patients." @default.
- W3046535017 created "2020-08-07" @default.
- W3046535017 creator A5006250732 @default.
- W3046535017 creator A5014741575 @default.
- W3046535017 creator A5019935534 @default.
- W3046535017 creator A5021961966 @default.
- W3046535017 creator A5036645024 @default.
- W3046535017 creator A5046597133 @default.
- W3046535017 creator A5050735390 @default.
- W3046535017 creator A5050833677 @default.
- W3046535017 creator A5059673434 @default.
- W3046535017 creator A5060939298 @default.
- W3046535017 creator A5061672354 @default.
- W3046535017 creator A5067325783 @default.
- W3046535017 creator A5072530790 @default.
- W3046535017 creator A5089641600 @default.
- W3046535017 date "2020-07-31" @default.
- W3046535017 modified "2023-10-11" @default.
- W3046535017 title "Computed Tomography–Based Differentiation of Benign and Malignant Craniofacial Lesions in Neurofibromatosis Type I Patients: A Machine Learning Approach" @default.
- W3046535017 cites W1811892266 @default.
- W3046535017 cites W1874456670 @default.
- W3046535017 cites W1961693884 @default.
- W3046535017 cites W1966969988 @default.
- W3046535017 cites W1984821247 @default.
- W3046535017 cites W2016626690 @default.
- W3046535017 cites W2054674800 @default.
- W3046535017 cites W2059977715 @default.
- W3046535017 cites W2063057728 @default.
- W3046535017 cites W2109436606 @default.
- W3046535017 cites W2113286019 @default.
- W3046535017 cites W2146522808 @default.
- W3046535017 cites W2320419876 @default.
- W3046535017 cites W2327401535 @default.
- W3046535017 cites W2517450070 @default.
- W3046535017 cites W2560234521 @default.
- W3046535017 cites W2565813193 @default.
- W3046535017 cites W2711636288 @default.
- W3046535017 cites W2742317286 @default.
- W3046535017 cites W2744198038 @default.
- W3046535017 cites W2770027889 @default.
- W3046535017 cites W2790414987 @default.
- W3046535017 cites W2794068141 @default.
- W3046535017 cites W2803327039 @default.
- W3046535017 cites W2803899823 @default.
- W3046535017 cites W2896419000 @default.
- W3046535017 cites W2896886167 @default.
- W3046535017 cites W2968247845 @default.
- W3046535017 doi "https://doi.org/10.3389/fonc.2020.01192" @default.
- W3046535017 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7411852" @default.
- W3046535017 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32850344" @default.
- W3046535017 hasPublicationYear "2020" @default.
- W3046535017 type Work @default.
- W3046535017 sameAs 3046535017 @default.
- W3046535017 citedByCount "4" @default.
- W3046535017 countsByYear W30465350172020 @default.
- W3046535017 countsByYear W30465350172021 @default.
- W3046535017 countsByYear W30465350172022 @default.
- W3046535017 crossrefType "journal-article" @default.
- W3046535017 hasAuthorship W3046535017A5006250732 @default.
- W3046535017 hasAuthorship W3046535017A5014741575 @default.
- W3046535017 hasAuthorship W3046535017A5019935534 @default.
- W3046535017 hasAuthorship W3046535017A5021961966 @default.
- W3046535017 hasAuthorship W3046535017A5036645024 @default.
- W3046535017 hasAuthorship W3046535017A5046597133 @default.
- W3046535017 hasAuthorship W3046535017A5050735390 @default.
- W3046535017 hasAuthorship W3046535017A5050833677 @default.
- W3046535017 hasAuthorship W3046535017A5059673434 @default.
- W3046535017 hasAuthorship W3046535017A5060939298 @default.
- W3046535017 hasAuthorship W3046535017A5061672354 @default.
- W3046535017 hasAuthorship W3046535017A5067325783 @default.
- W3046535017 hasAuthorship W3046535017A5072530790 @default.
- W3046535017 hasAuthorship W3046535017A5089641600 @default.
- W3046535017 hasBestOaLocation W30465350171 @default.
- W3046535017 hasConcept C118552586 @default.
- W3046535017 hasConcept C126838900 @default.
- W3046535017 hasConcept C142724271 @default.
- W3046535017 hasConcept C2778984943 @default.
- W3046535017 hasConcept C2781245598 @default.
- W3046535017 hasConcept C71924100 @default.
- W3046535017 hasConcept C72563966 @default.
- W3046535017 hasConceptScore W3046535017C118552586 @default.
- W3046535017 hasConceptScore W3046535017C126838900 @default.
- W3046535017 hasConceptScore W3046535017C142724271 @default.
- W3046535017 hasConceptScore W3046535017C2778984943 @default.
- W3046535017 hasConceptScore W3046535017C2781245598 @default.
- W3046535017 hasConceptScore W3046535017C71924100 @default.
- W3046535017 hasConceptScore W3046535017C72563966 @default.
- W3046535017 hasFunder F4320321881 @default.
- W3046535017 hasFunder F4320321885 @default.
- W3046535017 hasLocation W30465350171 @default.
- W3046535017 hasLocation W30465350172 @default.
- W3046535017 hasLocation W30465350173 @default.
- W3046535017 hasOpenAccess W3046535017 @default.
- W3046535017 hasPrimaryLocation W30465350171 @default.
- W3046535017 hasRelatedWork W141524600 @default.
- W3046535017 hasRelatedWork W1841185769 @default.
- W3046535017 hasRelatedWork W2071535500 @default.
- W3046535017 hasRelatedWork W2155887765 @default.
- W3046535017 hasRelatedWork W2159653556 @default.
- W3046535017 hasRelatedWork W2315085516 @default.