Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046551437> ?p ?o ?g. }
- W3046551437 endingPage "11" @default.
- W3046551437 startingPage "1" @default.
- W3046551437 abstract "The automatic detection of epilepsy is essentially the classification of EEG signals of seizures and nonseizures, and its purpose is to distinguish the different characteristics of seizure brain electrical signals and normal brain electrical signals. In order to improve the effect of automatic detection, this study proposes a new classification method based on unsupervised multiview clustering results. In addition, considering the high-dimensional characteristics of the original data samples, a deep convolutional neural network (DCNN) is introduced to extract the sample features to obtain deep features. The deep feature reduces the sample dimension and increases the sample separability. The main steps of our proposed novel EEG detection method contain the following three steps: first, a multiview FCM clustering algorithm is introduced, and the training samples are used to train the center and weight of each view. Then, the class center and weight of each view obtained by training are used to calculate the view-weighted membership value of the new prediction sample. Finally, the classification label of the new prediction sample is obtained. Experimental results show that the proposed method can effectively detect seizures." @default.
- W3046551437 created "2020-08-07" @default.
- W3046551437 creator A5050221970 @default.
- W3046551437 creator A5059599211 @default.
- W3046551437 date "2020-08-01" @default.
- W3046551437 modified "2023-10-15" @default.
- W3046551437 title "An Epilepsy Detection Method Using Multiview Clustering Algorithm and Deep Features" @default.
- W3046551437 cites W1733363676 @default.
- W3046551437 cites W1981898797 @default.
- W3046551437 cites W1988998152 @default.
- W3046551437 cites W1999771120 @default.
- W3046551437 cites W2006319238 @default.
- W3046551437 cites W2011463771 @default.
- W3046551437 cites W2024011138 @default.
- W3046551437 cites W2027927824 @default.
- W3046551437 cites W2032070545 @default.
- W3046551437 cites W2040990639 @default.
- W3046551437 cites W2041875327 @default.
- W3046551437 cites W2041935121 @default.
- W3046551437 cites W2042323927 @default.
- W3046551437 cites W2050209058 @default.
- W3046551437 cites W2060529818 @default.
- W3046551437 cites W2061023335 @default.
- W3046551437 cites W2080966422 @default.
- W3046551437 cites W2081576757 @default.
- W3046551437 cites W2090773675 @default.
- W3046551437 cites W2091082022 @default.
- W3046551437 cites W2092634008 @default.
- W3046551437 cites W2100495367 @default.
- W3046551437 cites W2108164891 @default.
- W3046551437 cites W2111125935 @default.
- W3046551437 cites W2112796928 @default.
- W3046551437 cites W2116360511 @default.
- W3046551437 cites W2124416664 @default.
- W3046551437 cites W2129094939 @default.
- W3046551437 cites W2156192068 @default.
- W3046551437 cites W2345189929 @default.
- W3046551437 cites W2493031908 @default.
- W3046551437 cites W2584922303 @default.
- W3046551437 cites W2618241468 @default.
- W3046551437 cites W2750443890 @default.
- W3046551437 cites W2750599140 @default.
- W3046551437 cites W2758602683 @default.
- W3046551437 cites W2900570788 @default.
- W3046551437 cites W2902852270 @default.
- W3046551437 cites W2919115771 @default.
- W3046551437 cites W2923146325 @default.
- W3046551437 cites W2959044096 @default.
- W3046551437 cites W2968533460 @default.
- W3046551437 cites W3001706096 @default.
- W3046551437 cites W3011645314 @default.
- W3046551437 cites W4248307879 @default.
- W3046551437 doi "https://doi.org/10.1155/2020/5128729" @default.
- W3046551437 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7416238" @default.
- W3046551437 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32802149" @default.
- W3046551437 hasPublicationYear "2020" @default.
- W3046551437 type Work @default.
- W3046551437 sameAs 3046551437 @default.
- W3046551437 citedByCount "14" @default.
- W3046551437 countsByYear W30465514372021 @default.
- W3046551437 countsByYear W30465514372022 @default.
- W3046551437 countsByYear W30465514372023 @default.
- W3046551437 crossrefType "journal-article" @default.
- W3046551437 hasAuthorship W3046551437A5050221970 @default.
- W3046551437 hasAuthorship W3046551437A5059599211 @default.
- W3046551437 hasBestOaLocation W30465514371 @default.
- W3046551437 hasConcept C108583219 @default.
- W3046551437 hasConcept C118552586 @default.
- W3046551437 hasConcept C138885662 @default.
- W3046551437 hasConcept C153180895 @default.
- W3046551437 hasConcept C154945302 @default.
- W3046551437 hasConcept C15744967 @default.
- W3046551437 hasConcept C169760540 @default.
- W3046551437 hasConcept C185592680 @default.
- W3046551437 hasConcept C198531522 @default.
- W3046551437 hasConcept C202444582 @default.
- W3046551437 hasConcept C2776401178 @default.
- W3046551437 hasConcept C2778186239 @default.
- W3046551437 hasConcept C33676613 @default.
- W3046551437 hasConcept C33923547 @default.
- W3046551437 hasConcept C41008148 @default.
- W3046551437 hasConcept C41895202 @default.
- W3046551437 hasConcept C43617362 @default.
- W3046551437 hasConcept C522805319 @default.
- W3046551437 hasConcept C52622490 @default.
- W3046551437 hasConcept C73555534 @default.
- W3046551437 hasConcept C81363708 @default.
- W3046551437 hasConcept C86803240 @default.
- W3046551437 hasConceptScore W3046551437C108583219 @default.
- W3046551437 hasConceptScore W3046551437C118552586 @default.
- W3046551437 hasConceptScore W3046551437C138885662 @default.
- W3046551437 hasConceptScore W3046551437C153180895 @default.
- W3046551437 hasConceptScore W3046551437C154945302 @default.
- W3046551437 hasConceptScore W3046551437C15744967 @default.
- W3046551437 hasConceptScore W3046551437C169760540 @default.
- W3046551437 hasConceptScore W3046551437C185592680 @default.
- W3046551437 hasConceptScore W3046551437C198531522 @default.
- W3046551437 hasConceptScore W3046551437C202444582 @default.