Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046556822> ?p ?o ?g. }
- W3046556822 endingPage "117206" @default.
- W3046556822 startingPage "117206" @default.
- W3046556822 abstract "In diffusion MRI, spherical deconvolution approaches can estimate local white matter (WM) fiber orientation distributions (FOD) which can be used to produce fiber tractography reconstructions. The applicability of spherical deconvolution to gray matter (GM), however, is still limited, despite its critical role as start/endpoint of WM fiber pathways. The advent of multi-shell diffusion MRI data offers additional contrast to model the GM signal but, to date, only isotropic models have been applied to GM. Evidence from both histology and high-resolution diffusion MRI studies suggests a marked anisotropic character of the diffusion process in GM, which could be exploited to improve the description of the cortical organization. In this study, we investigated whether performing spherical deconvolution with tissue specific models of both WM and GM can improve the characterization of the latter while retaining state-of-the-art performances in WM. To this end, we developed a framework able to simultaneously accommodate multiple anisotropic response functions to estimate multiple, tissue-specific, fiber orientation distributions (mFODs). As proof of principle, we used the diffusion kurtosis imaging model to represent the WM signal, and the neurite orientation dispersion and density imaging (NODDI) model to represent the GM signal. The feasibility of the proposed approach is shown with numerical simulations and with data from the Human Connectome Project (HCP). The performance of our method is compared to the current state of the art, multi-shell constrained spherical deconvolution (MSCSD). The simulations show that with our new method we can accurately estimate a mixture of two FODs at SNR≥50. With HCP data, the proposed method was able to reconstruct both tangentially and radially oriented FODs in GM, and performed comparably well to MSCSD in computing FODs in WM. When performing fiber tractography, the trajectories reconstructed with mFODs reached the cortex with more spatial continuity and for a longer distance as compared to MSCSD and allowed to reconstruct short trajectories tangential to the cortical folding. In conclusion, we demonstrated that our proposed method allows to perform spherical deconvolution of multiple anisotropic response functions, specifically improving the performances of spherical deconvolution in GM tissue." @default.
- W3046556822 created "2020-08-07" @default.
- W3046556822 creator A5016894027 @default.
- W3046556822 creator A5030544325 @default.
- W3046556822 creator A5034725246 @default.
- W3046556822 creator A5056970276 @default.
- W3046556822 date "2020-11-01" @default.
- W3046556822 modified "2023-10-14" @default.
- W3046556822 title "Spherical deconvolution with tissue-specific response functions and multi-shell diffusion MRI to estimate multiple fiber orientation distributions (mFODs)" @default.
- W3046556822 cites W1133283280 @default.
- W3046556822 cites W1536052010 @default.
- W3046556822 cites W1585838142 @default.
- W3046556822 cites W1964802316 @default.
- W3046556822 cites W1965894642 @default.
- W3046556822 cites W1969586479 @default.
- W3046556822 cites W1985385518 @default.
- W3046556822 cites W1988632449 @default.
- W3046556822 cites W2001611992 @default.
- W3046556822 cites W2024046025 @default.
- W3046556822 cites W2030235290 @default.
- W3046556822 cites W2030765885 @default.
- W3046556822 cites W2031345090 @default.
- W3046556822 cites W2032254014 @default.
- W3046556822 cites W2034252184 @default.
- W3046556822 cites W2043932413 @default.
- W3046556822 cites W2044235052 @default.
- W3046556822 cites W2045442080 @default.
- W3046556822 cites W2049683591 @default.
- W3046556822 cites W2052570168 @default.
- W3046556822 cites W2053838094 @default.
- W3046556822 cites W2067214598 @default.
- W3046556822 cites W2067560632 @default.
- W3046556822 cites W2069402698 @default.
- W3046556822 cites W2080198834 @default.
- W3046556822 cites W2094435366 @default.
- W3046556822 cites W2103165428 @default.
- W3046556822 cites W2108895118 @default.
- W3046556822 cites W2112185786 @default.
- W3046556822 cites W2116823839 @default.
- W3046556822 cites W2124769092 @default.
- W3046556822 cites W2131298599 @default.
- W3046556822 cites W2136573752 @default.
- W3046556822 cites W2137679584 @default.
- W3046556822 cites W2138836107 @default.
- W3046556822 cites W2142059961 @default.
- W3046556822 cites W2145132952 @default.
- W3046556822 cites W2159929956 @default.
- W3046556822 cites W2169289017 @default.
- W3046556822 cites W2275837766 @default.
- W3046556822 cites W2411861314 @default.
- W3046556822 cites W2416620990 @default.
- W3046556822 cites W2507360855 @default.
- W3046556822 cites W2507460598 @default.
- W3046556822 cites W2508982726 @default.
- W3046556822 cites W2561810854 @default.
- W3046556822 cites W2586127859 @default.
- W3046556822 cites W2612025826 @default.
- W3046556822 cites W2759294325 @default.
- W3046556822 cites W2766639217 @default.
- W3046556822 cites W2767819389 @default.
- W3046556822 cites W2775461784 @default.
- W3046556822 cites W2776959505 @default.
- W3046556822 cites W2804251845 @default.
- W3046556822 cites W2896239898 @default.
- W3046556822 cites W2899422702 @default.
- W3046556822 cites W2917917600 @default.
- W3046556822 cites W2953025698 @default.
- W3046556822 cites W2999192030 @default.
- W3046556822 cites W3015618497 @default.
- W3046556822 cites W3024220029 @default.
- W3046556822 cites W4248533749 @default.
- W3046556822 doi "https://doi.org/10.1016/j.neuroimage.2020.117206" @default.
- W3046556822 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32745681" @default.
- W3046556822 hasPublicationYear "2020" @default.
- W3046556822 type Work @default.
- W3046556822 sameAs 3046556822 @default.
- W3046556822 citedByCount "16" @default.
- W3046556822 countsByYear W30465568222021 @default.
- W3046556822 countsByYear W30465568222022 @default.
- W3046556822 countsByYear W30465568222023 @default.
- W3046556822 crossrefType "journal-article" @default.
- W3046556822 hasAuthorship W3046556822A5016894027 @default.
- W3046556822 hasAuthorship W3046556822A5030544325 @default.
- W3046556822 hasAuthorship W3046556822A5034725246 @default.
- W3046556822 hasAuthorship W3046556822A5056970276 @default.
- W3046556822 hasBestOaLocation W30465568221 @default.
- W3046556822 hasConcept C105702510 @default.
- W3046556822 hasConcept C108280814 @default.
- W3046556822 hasConcept C120665830 @default.
- W3046556822 hasConcept C121332964 @default.
- W3046556822 hasConcept C126838900 @default.
- W3046556822 hasConcept C136229726 @default.
- W3046556822 hasConcept C143409427 @default.
- W3046556822 hasConcept C149550507 @default.
- W3046556822 hasConcept C159985019 @default.
- W3046556822 hasConcept C16345878 @default.
- W3046556822 hasConcept C174576160 @default.
- W3046556822 hasConcept C192562407 @default.